期刊文献+

杂系混合信号的盲分离 被引量:2

Blind Separation of Hybrid Mixture Signals
下载PDF
导出
摘要 利用基于随机变量概率密度函数的非参数密度估计的核密度估计法对评价函数进行直接估计,改进了盲分离算法的性能.理论推导和试验都证实了这种基于核密度估计的非参数密度估计盲分离算法能实现包含超高斯和亚高斯信号的杂系混合信号的盲分离,为盲分离问题在实际问题中的应用奠定了一定的基础. Kernel density estimation (KDS) is a nonparametric density estimation based on random variables probability density functions, and it is not limited in any assumption about the density function model, and it is evaluated from the original data without the consideration of the above statistical features. Based on it, the score function was estimated by KDS, the performance of algorithms for BSS was improved. The theoretical derivation and experiments show that this algorithm succeeds in separating the hybrid mixing signals including the super-Gaussian and sub-Gaussian signals, and it paves the way to wider applications of BSS methods to real world signal processing.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2004年第2期203-206,共4页 Journal of Shanghai Jiaotong University
关键词 盲源分离 杂系混合信号 核密度估计 Probability density function Signal processing
  • 相关文献

参考文献7

  • 1[1]Jutten C, Herault J. Space and time adaptive signal processing by neural network models [A]. Neural Network for Computing, AIP Conf[C]. Snowbird,UT: Proc, 1986,151:207-211. 被引量:1
  • 2[2]Jones M C, Sheather S J. A brief survey of bandwith selection for density esitmation [J]. Journal of the American Statistical Association, 1996,91 (3): 401 -407. 被引量:1
  • 3[3]Jones M C, Marron J S, Sheather S J. Progress in data-based bandwidth selection for kernel density estimation[J]. Computational statistics, 1996, 11: 337-381. 被引量:1
  • 4[4]Comon P. Independent components analysis, a new concept? [J]. Signal Processing, 1994,36:287- 314. 被引量:1
  • 5[5]Cardoso J F, Laheld B. Equivariant adaptive source separation [J]. IEEE Trans Signal Processing, 1996,44:3017-3030. 被引量:1
  • 6[6]Fukunaga K, Hostetler L D. The estimation of the gradient of a density function, with applications in pattern recognition[J]. IEEE Trans Infromation Theory, 1975, IT-21(1):32-40. 被引量:1
  • 7[7]Amari S, Douglas S, Cichocki A. Multichannel blind deconvolution and equalization using the natural gradient [A]. Proc 1st IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communi cations[C]. Paris, France :IEEE, 1997. 101- 104. 被引量:1

同被引文献19

  • 1许士敏,陈鹏举.频谱混叠通信信号分离方法[J].航天电子对抗,2004,33(5):53-55. 被引量:10
  • 2Jutten C, Herault J. Blind separation of sources,Part I : an adaptive algorithm based on neuromimetic architecture[J]. Signal Processing, 1991, 24:1-10. 被引量:1
  • 3Common P, Jutten C, Herault J. Blind separation of sources, Part Ⅱ: problems statement [J]. Signal Processing, 1991, 24: 11-20. 被引量:1
  • 4Sorouchyari E. Blind separation of sources, Part Ⅲ:stability analysis[J]. Signal Processing, 1991, 24:21-29. 被引量:1
  • 5Common P. Independent component analysis: a new concept? [J] Signal Processing, 1994, 36(3): 287- 314. 被引量:1
  • 6Hyvarinen A, Oja E. Independent component analysis: algorithm and applications [J]. Neural networks, 2000, 13:411-430. 被引量:1
  • 7Cardoso J F, Laheld B. Equivariant adaptive sources parathion[J]. IEE Trans Signal Processing, 1996, 44:3 017-3 029. 被引量:1
  • 8Jones M C, Sheather S J. A brief survey of bandwidth selection for density estimation[J]. Journal of the American Statistical Association, 1996,91(433) :401-407. 被引量:1
  • 9Sawada H, Mukai R, Araki S, et al. Frequency-domain blind source separation, speech enhancement [M]. New York:Springer, 2005. 被引量:1
  • 10Calhoun V, Adali T, Pearlson G, etal. On complex informax applied to functional MRI data [C] //Proc of ICASSP'02. Orlando: IEEE, 2002.1-1009-I -1012. 被引量:1

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部