期刊文献+

Lung sounds auscultation technology based on ANC - ICA algorithm in high bat- tlefield noise environment

Lung sounds auscultation technology based on ANC - ICA algorithm in high bat- tlefield noise environment
下载PDF
导出
摘要 AIM:To explore the more accurate lung sounds auscultation technology in high battlefield noise environment.METHODS: In this study, we restrain high background noise using a new method-adaptive noise canceling based on independent component analysis (ANC-ICA), the method, by incorporating both second-order and higher-order statistics can remove noise components of the primary input signal based on statistical independence.RESULTS:The algorithm retained the local feature of lung sounds while eliminating high background noise, and performed more effectively than the conventional LMS algorithm.CONCLUSION:This method can cancel high battlefield noise of lung sounds effectively thus can help diagnose lung disease more accurately. AIM:To explore the more accurate lung sounds auscultation technology in high battlefield noise environment. METHODS: In this study, we restrain high background noise using a new method-adaptive noise canceling based on independent component analysis ( ANC-ICA) , the method, by incorporating both second-order and higher-order statistics can remove noise components of the primary input signal based on statistical independence. RESULTS: The algorithm retained the local feature of lung sounds while eliminating high background noise, and performed more effectively than the conventional LMS algorithm. CONCLUSION: This method can cancel high battlefield noise of lung sounds effectively thus can help diagnose lung disease more accurately.
出处 《Journal of Medical Colleges of PLA(China)》 CAS 2003年第1期60-64,共5页 中国人民解放军军医大学学报(英文版)
基金 Supported by Obligatory Budget of Chine PLA in the "tenth-five years"(OIL077)
关键词 adaptive noise canceling ( ANC) independent component analysis (ICA) auscultation lung sounds 战场高噪声环境 肺音 听诊技术 信号采集 ANC-ICA算法
  • 相关文献

参考文献10

  • 1[1]Gavriely N, Palti Y, Alroy G. Spectral characteristics of normal breathe sounds [J]. J Appl Physiol, 1981; 50(12) :307. 被引量:1
  • 2[5]Xu JP, Cheng JZ, Wu YJ. A cepstral method for analysis of acoustic transmission characteristics of respiratory system [J]. IEEE Trans. BME, 1998; 45(5):660. 被引量:1
  • 3[6]Kahya YP, Guler EC, Sahin S. Respiratory disease diagnosis using lung sounds[C]. Proceedings of the 19th Annual International Conference of the IEEE, 1997; 5 : 2051. 被引量:1
  • 4[7]Suzuki A, Sumi C, Nakayama K. Realtime adaptive canceling of ambient noise in lung sound measurement [J]. Med Bio Eng Comput, 1995; 33(5):704. 被引量:1
  • 5[8]Patel SB, Callahan TF, Callahan MG et al. An adaptive noise-reduction stethoscope for auscultation in high noise environments [J]. J Acoust Soc Am, 1998; 103(5Pt 1):2483. 被引量:1
  • 6[9]Hyung MP, Sang HO, Lee SY. On adaptive noise canceling based on independent component analysis [C]. 3rd International Conference on ICA and BSS December 9-12, 2001; San Diego, California, USA. 被引量:1
  • 7[10]Mussell MJ. The need for standards in recording and respiratory sounds [J]. Med Bio Eng Comput, 1992; 30(3): 129. 被引量:1
  • 8[11]Simon Haykin. Adaptive filter theory [M]. Englewood Cliffs, New Jersey: Prentice Hall, 1991. 被引量:1
  • 9[12]Bell A, Sejnowski T. An information maximization approach to blind separation and blind deconvolution [J]. Neural Comput, 1995;7(7):1129. 被引量:1
  • 10[13]Lee TW. Independent component analysis-theory and applications [M]. Kluwer Academic Publishers, Boston, 1998. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部