期刊文献+

一维非线性对流扩散方程特征有限元的两重网格算法 被引量:8

Two-Grid Algorithm for Characteristics Finite-Element Solution of 1D Nonlinear Convection-Dominated Diffusion Equation
下载PDF
导出
摘要 针对一维非线性对流扩散方程,构造了特征有限元两重网格算法.该算法只需要在粗网格上进行非线性迭代运算,而在所需要求解的细网格上进行一次线性运算即可.对于非线性对流占优扩散方程,不仅可以消除因对流占优项引起的数值振荡现象,更重要的是可以加快收敛速度、提高计算效率.误差估计表明,只要选取粗网格步长与细网格步长的平方根同阶,就可以使两重网格解与有限元解保持同样的计算精度. For one dimensional nonlinear convection diffusion equation, a two-grid method of characteristic finite-element solution is constructed, where the nonlinear iteration is only executed on the coarse grid, then the fine-grid solution can be obtained via a single linear step. For the nonlinear convection-dominated diffusion equation, the method can stabilize the numerical oscillation, accelerate the convergence and improve the computational efficiency. The error analysis demonstrates that if the mesh size of coarse-grid equal to the square root of fine-grid, the two-grid solution of the characteristic finite-element and the iteration solution of characteristic finite-element have the same order of accuracy.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2004年第2期208-211,共4页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目 (NSF50 1 1 3 63 0 ) 陕西省教育厅自然科学基金资助项目 (0 2JK0 48).
关键词 对流扩散方程 特征有限元 两重网格算法 收敛性 convection-diffusion equation characteristic finite-element two-grid method convergence
  • 相关文献

参考文献3

  • 1[1]Douglas J Jr, Russell T F. Numerical method for convection-dominated diffusion problem based on combining the method of characteristics with finite element or finite difference procedures [J]. SIAM J Numer Anal, 1982,19(5):871~885. 被引量:1
  • 2[2]Xu Jinchao. A novel two-grid method for semilinear elliptic equations [J]. SIAM J Sci Comput, 1994,15(1):231~237. 被引量:1
  • 3[3]Xu Jinchao. Two-grid finite element discretization techniques for linear and nonlinear PDEs [J]. SIAM J Numer Anal, 1996,33(5):1 759~1 777. 被引量:1

同被引文献27

引证文献8

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部