期刊文献+

Springback and tensile strength of 2A97 aluminum alloy during age forming 被引量:3

2A97铝合金时效成形过程中的回弹量和抗拉强度(英文)
下载PDF
导出
摘要 The analysis of variance(ANOVA), multiple quadratic regression and radial basis function artificial neural network(RBFANN) methods were used to study the springback and tensile strength in age forming of 2A97 aluminum alloy based on orthogonal array. The ANOVA analysis indicates that the springback reaches the minimum value when age forming is performed at 210 °C for 20 h using a single-curvature die with a radius of 400 mm, and the tensile strength reaches the maximum value when age forming is performed at 180 °C for 15 h using a single-curvature die with a radius of 1000 mm. The orders of the importance for the three factors of pre-deformation radius, aging temperature and aging time on the springback and tensile strength were determined. By analyzing the predicted results of the multiple quadratic regression and RBFANN methods, the prediction accuracy of the RBFANN model is higher than that of the regression model. 基于正交实验,运用方差分析、多元二次回归和径向人工神经网络研究2A97铝合金时效成形过程中的回弹量和抗拉强度。方差分析结果表明,在预弯半径为400 mm、时效温度为210°C时效20 h后试样具有最小的回弹量;而在预弯半径为1000 mm、时效温度为180°C下时效15 h后试样具有最大的抗拉强度。确定了预弯半径、时效温度和时效时间这3个因素对试样回弹量和抗拉强度影响大小的顺序。多元二次回归方法和径向人工神经网络的预测结果表明,径向人工神经网络模型具有更高的预测精度。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第4期1043-1049,共7页 中国有色金属学报(英文版)
关键词 aluminum alloy age forming SPRINGBACK tensile strength orthogonal experiment artificial neural network 铝合金 时效成形 回弹量 抗拉强度 正交试验 人工神经网络
  • 相关文献

参考文献12

  • 1郭拉凤,李保成,张治民.基于神经网络的TC21合金本构关系模型(英文)[J].中国有色金属学会会刊:英文版,2013,23(6):1761-1765. 被引量:4
  • 2韩飞,莫健华,祁宏伟,龙睿芬,崔晓辉,李中伟.Springback prediction for incremental sheet forming based on FEM-PSONN technology[J].Transactions of Nonferrous Metals Society of China,2013,23(4):1061-1071. 被引量:5
  • 3Kamel Benyelloul,Hafid Aourag.Elastic constants of austenitic stainless steel: Investigation by the first-principles calculations and the artificial neural network approach[J]. Computational Materials Science . 2013 被引量:1
  • 4Hong-Ying Li,Dong-Dong Wei,Yang-Hua Li,Xiao-Feng Wang.Application of artificial neural network and constitutive equations to describe the hot compressive behavior of 28CrMnMoV steel[J]. Materials and Design . 2011 被引量:1
  • 5Zhan Li Hua,Li Yan Guang,Huang Ming Hui,Lin Jian Guo.Comparative Study of Creep and Stress Relaxation Behavior for 7055 Aluminum Alloy[J]. Advanced Materials Research . 2011 (314) 被引量:1
  • 6Zhan Li Hua,Li Yan Guang,Huang Ming Hui.Effect of Process Parameters on Microstructures of 7055 Aluminum Alloy in Creep Age Forming[J]. Applied Mechanics and Materials . 2011 (80) 被引量:1
  • 7Yuan Zhi Shan,Lu Zheng,Xie You Hua,Wu Xiu Liang,Dai Sheng Long,Liu Chang Sheng.Mechanical Properties of a Novel High-Strength Aluminum-Lithium Alloy[J]. Materials Science Forum . 2011 (689) 被引量:1
  • 8D.S.BADKAR,K.S.PANDEY,G.BUVANASHEKARAN.Effects of laser phase transformation hardening parameters on heat input and hardened-bead profile quality of unalloyed titanium[J].Transactions of Nonferrous Metals Society of China,2010,20(6):1078-1091. 被引量:4
  • 9Y. Sun,W.D. Zeng,Y.Q. Zhao,Y.L. Qi,X. Ma,Y.F. Han.Development of constitutive relationship model of Ti600 alloy using artificial neural network[J]. Computational Materials Science . 2010 (3) 被引量:2
  • 10Lihua Zhan,Jianguo Lin,T A Dean.A review of the development of creep age forming: Experimentation, modelling and applications[J]. International Journal of Machine Tools and Manufacture . 2010 (1) 被引量:2

二级参考文献34

  • 1Sellars C.M;Tegart W.J.M.On the mechanism of hot deformation,1966(09). 被引量:1
  • 2C. N. Elias,J. H. C. Lima,R. Valiev,M. A. Meyers.Biomedical applications of titanium and its alloys[J]. JOM . 2008 (3) 被引量:1
  • 3Kalil SJ,Maugeri F,Rodrigues MI.Response surface analysis and simulation as a tool for bioprocess design and optimization. Process Biochemistry . 2000 被引量:1
  • 4C. N. Elias,J. H. C. Lima,R. Valiev,M. A. Meyers.Biomedical Applications of Titanium and Its Alloys. Journal of Occupational Medicine . 2008 被引量:1
  • 5DULEY W W.Laser processing and analysis of materials. . 1983 被引量:1
  • 6K. H. Lo F. T. Cheng and H. C. Man.Laser transformation hardening of AISI 440C martensitic stainless steel for higher cavitation erosion resistance. Surface and Coatings Technology . 2003 被引量:1
  • 7D. I. Pantelis E. Bouyiouri N. Kouloumbi P. Vassiliou and A. Koutsomichalis.Wear and corrosion resistance of laser surface hardened structural steel. Surface and Coatings Technology . 2002 被引量:1
  • 8D Kim,S Rhee,H Park.Modeling and optimization of a GMA welding process by genetic algorithm and response surface methodology. International Journal of Production Research . 2002 被引量:1
  • 9Gunaraj V,Murugan N.Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes. Journal of Materials . 1999 被引量:1
  • 10TT Allen,RW Richardson,DP Tagliable,GP Maul.Statistical process design for robotic GMA welding of sheet metal. Welding Journal . 2002 被引量:1

共引文献12

同被引文献29

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部