期刊文献+

一种多学科交叉的古典文献文字识别技术研究

Research on a Multidisciplinary and Interdisciplinary Classical Document Character Recognition Technology
下载PDF
导出
摘要 为了古典文献文字识别效果更好,在分析前人研究成果的基础上,基于多学科交叉,对遗传算法进行改进:建立经过优化的初始化种群,为交叉选择方法提供多样性的信息,利用柯西变异与高斯变异结合形成PM生成器.实验表明:该技术有效地提高了求解质量,较好地优化算法性能. An Improvement method of Genetic Algorithms Based on Multidisciplinary Intersection was introduced:for the better recognition effect of classical documents word,based on the analysis of previous research results,establishment of optimized initialization population,providing diverse information for cross-selection methods,formation of PM Generator by combining Cauchy variation with Gauss variation.Experiments showed that this technique could effectively improve the quality of solution and the optimization performance of the algorithm.
作者 张敬花 马海云 张忠林 ZHANG Jing-hua;MA Hai-yun;ZHANG Zhong-lin(School of Marxism,Tianshui Normal University,Gansu Tianshui 741001,China;School of electronic information and electrical engineering,Tianshui Normal University,Gansu Tianshui 741001,China;School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处 《中央民族大学学报(自然科学版)》 2019年第3期56-60,共5页 Journal of Minzu University of China(Natural Sciences Edition)
基金 甘肃省自然科学基金项目(No.18JR3RE245) 教育部人文社会科学研究规划基础(No.14YJA870014)
关键词 古典文献汉字识别 属性特征 改进遗传算法 小波变换 分治策略 classical Chinese character recognition attribute features improved genetic algorithm wavelet transform divide and conquer strategy
  • 相关文献

参考文献4

二级参考文献21

  • 1Silla C N, Freitas A A. A survey of hierarchical classification across different application domains. Data Mining and Knowledge Discovery, 2011, 22: 31-72. 被引量:1
  • 2Koller D, Sahami M. Hierarchically classifying documents using very few words//Proceedings of the 14th International Conference on Machine Learning (ICML-1997). San Francisco: Morgan Kaufmann, 1997:170-178. 被引量:1
  • 3Babbar R, Partalas I, Gaussier E, et al. On flat versus hierarchical classification in large-scale taxonomies// Burges C J C, Bottou L, Welling M, et al. Advances in Neural Information Processing Systems (NIPS-2013). Lake Tahoe: NIPS Foundation, 2013:1824-1832. 被引量:1
  • 4Tseng H, Chang P, Andrew G, et al. A conditional random field word segmenter // Proceedings of the Fourth SIGHAN Workshop on Chinese Language Processing. Jeju Island, 2005:168-171. 被引量:1
  • 5Chang P C, Galley M, Manning C D. Optimizing Chinese word segmentation for machine translation performance//Proceedings of the Third Workshop on Statistical Machine Translation. Columbus: Associa- tion for Computational Linguistics, 2008:224-232. 被引量:1
  • 6McCallum A, Nigam K. A comparison of event models for naive Bayes text classification // Procee- dings of the AAAI-1998 Workshop on Learning for Text Categorization. Madison, 1998:41-48. 被引量:1
  • 7Li Baoli, Lu Qin, Yu Shiwen. An adaptive k-nearest neighbor text categorization strategy. ACM Transac- tions Asian Language Information Processing, 2004, 3(4): 215-226. 被引量:1
  • 8Chang C C, Lin C J. LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): Article 27. 被引量:1
  • 9Fan R E, Chang K W, Hsieh C J, et al. LIBLINEAR: a library for large linear classification. Journal of Machine Learning Research, 2008, 9:1871-1874. 被引量:1
  • 10张志平.基于“中文新闻信息分类与代码”文本分类[J].太原理工大学学报,2010,41(4):402-405. 被引量:5

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部