期刊文献+

一种用于癫痫发作预测的可穿戴无线传感器 被引量:1

A Wearable Wireless Body Sensor for Epileptic Seizure Prediction
下载PDF
导出
摘要 该文设计了一种贴片可穿戴式心电传感器(Wearable Patch-type ECG Sensor,WPES),主要由电极、心电采集模块、蓝牙模块和电源模块等部分组成。WPES以BMD101芯片为核心进行心电采集,通过低功耗蓝牙实现与手机之间的通信。WPES具有电路简单、体积小、重量轻、功耗低、穿戴方便、舒适度高等特点,可以作为传感器节点用于网络化癫痫发作预测。 In this study, we designed a wearable patch-type ECG sensor(WPES), which is mainly composed of the electrodes, an ECG acquisition unit, a Bluetooth unit, and a power supplies module. By using BMD101 chip as the core of ECG acquisition, the WPES can communicate with smart phones through Bluetooth low energy(BLE). The WEPS can be well used in monitoring epileptic seizure prediction, based on its advantages of simplification of circuits, miniaturization, low-power consumption, light-weight, convenience of wearing, high-comfort etc.
出处 《中国医疗器械杂志》 2016年第4期257-259,共3页 Chinese Journal of Medical Instrumentation
基金 安徽省教育厅自然科学研究重点项目(KJ2016A470) 国家级大学生创新创业训练计划项目(201510367012)
关键词 癫痫发作预测 心率变异性 可穿戴传感器 低功耗蓝牙 epileptic seizure prediction heart rate variability wearable sensor Bluetooth low energy
  • 相关文献

参考文献7

  • 1韩凌,王宏.基于空频域特征分析方法的癫痫发作预测[J].仪器仪表学报,2014,35(11):2501-2507. 被引量:7
  • 2Vera Novak,Andrew L Reeves,Peter Novak,Phillip A Low,Frank W Sharbrough.??Time-frequency mapping of R–R interval during complex partial seizures of temporal lobe origin(J)Journal of the Autonomic Nervous System . 1999 (2) 被引量:1
  • 3Fujiwara K,Miyajima M,Yamakawa T,et al.Epileptic seizure prediction based on multivariate statistical process control of heart rate variability features. IEEE Transactions on Biomedical Engineering . 2015 被引量:1
  • 4Ebrahim Nemati,M. Jamal Deen,Tapas Mondal.A Wireless Wearable ECG Sensor for Long-Term Applications. IEEE Communications Magazine . 2012 被引量:1
  • 5Behbahani S,Dabanloo N J,Nasrabadi A M,Teixeira C A,Dourado A.Pre-ictal heart rate variability assessment of epileptic seizures by means of linear and non-linear analyses. Anadolu Kardiyoloji Dergisi . 2013 被引量:1
  • 6Eric VD,Willem MO,Kees PJ.Improved diagnosis in children with partial epilepsy using a multivariable prediction model based on EEG network characteristics. PloS One . 2013 被引量:1
  • 7Thurman David J,Beghi Ettore,Begley Charles E,Berg Anne T,Buchhalter Jeffrey R,Ding Ding,Hesdorffer Dale C,Hauser W Allen,Kazis Lewis,Kobau Rosemarie,Kroner Barbara,Labiner David,Liow Kore,Logroscino Giancarlo,Medina Marco T,Newton Charles.Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia . 2011 被引量:1

二级参考文献16

  • 1SRINIVASAN V, ESWARAN C, SRIRAAM N. Ap- proximate entropy based epileptic EEG detection using ar- tificial neural networks [J]. IEEE Transactions on Infor- mation Technology in Biomedicine, 2007, 11(3): 288-295. 被引量:1
  • 2JOUNY C C, FRANASZCZUK P J, BERGEY G K. Signal complexity and synchrony of epileptic seizures: Is there an identifiable preictal period? [J]. Clin Neuro- physiol, 2005, 116 (55): 2-8. 被引量:1
  • 3HARRISON M A F, OSORIO I, FREI M C. et al. Correla- tion dimension and integral do not predict epileptic sei- zures [J]. Chaos, 2005, 15(3): 33106. 被引量:1
  • 4ZHENG Y, WANG G, LI K, et al. Epileptic seizure prediction using phase synchronization based on biva- riate empirical mode decomposition [J]. Clin Neuro- physiol, 2013, 125(6): 1104-1111. 被引量:1
  • 5RAMI J O, ENAS W A. Seizure classification in EEG signals utilizing Hilbert-Huang transform [J]. BioMedical Engineering On Line, 2011, 10(1): 38-53. 被引量:1
  • 6PIGORINI A, CASALI A G, CASAROTTO S, et al. Time-frequency spectral analysis of TMS-evoked EEG oscillations by means of Hilbert-Huang transform [J]. Journal of Neuroscience Methods, 2011,198(2): 236-245. 被引量:1
  • 7KNYAZEVA M G, JALILI M, BRIOSCHI A, et al. To- pography of EEG multivariate phase synchronization in early Alzheimer's disease [J]. Neurobiology of Aging, 2010, 31(7): 1132-1144. 被引量:1
  • 8MA1WALD T, WINTERHALDER M, ASCHENBRENNER- SCHEIBE R, et al. Comparison of three nonlinear sei- zure prediction methods by means of the seizure pre- diction characteristic [J]. Physica D: Nonlinear Pheno- mena, 2004, 194(3-4): 357-368. 被引量:1
  • 9AYDORE S, PANTAZIS D, LEAHY R M. A note on the phase locking value and its properties [J]. Neurolmage, 2013, 74 (1): 231-244. 被引量:1
  • 10袁玲,杨帮华,马世伟.基于HHT和SVM的运动想象脑电识别[J].仪器仪表学报,2010,31(3):649-654. 被引量:46

共引文献6

同被引文献17

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部