期刊文献+

长短波方程多辛数值模拟(英文) 被引量:1

Numerical simulation between longand short waves bymultisymplectic method
下载PDF
导出
摘要 主要研究了Schrdinger-KdV方程的保多辛结构的数值格式.首先讨论了它的正则方程组,然后对此方程组用多辛格式,例如中点格式离散.数值实验验证了格式的有效性. The multisymplectic structure-preserving scheme for the Schrdinger-KdV equation was investigated.First the canonical formulation of the equation was discussed.Then,it was discretized by the multisymplectic integrator,such as a midpoint integrator.Numerical results were presented to illustrate the validity of the new scheme.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2015年第9期721-726,共6页 JUSTC
基金 Supported by the NNSFC(11301234,11271171,11101399) the Provincial Natural Science Foundation of Jiangxi(20142BCB23009,20151BAB201012) State Key Laboratory of Scientific and Engineering Computing,CAS,and Jiangsu Key Lab for NSLSCS(201302)
关键词 Schrodinger-KdV方程 长短波 多辛 Schrdinger-KdV equation long and short waves multisymplectic method
  • 相关文献

参考文献6

  • 1Thomas J. Bridges,Sebastian Reich.Numerical methods for Hamiltonian PDEs. J. Phys. A, Math. Gen . 2006 被引量:1
  • 2Jialin Hong,Linghua Kong.Novel Multi-Symplectic Integrators for Nonlinear Fourth-Order Schrodinger Equation with Trapped Term[J].Communications in Computational Physics,2010,7(3):613-630. 被引量:3
  • 3Ping Fu Zhao,Meng Zhao Qin.Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation. J. Phys. A, Math. Gen . 2000 被引量:1
  • 4Benney D J.A general theory for interactions between short and long waves. Studies in Applied Mathematics . 1977 被引量:1
  • 5Yoshinaga T,Kakutani T.Solitary and E-shock waves in a resonant system between long and short waves. Journal of the Physical Society of Japan . 1994 被引量:1
  • 6Pava J A.Stability of solitary wave solution for equations of short and long dispersive waves. Electr J Diff Equa . 2006 被引量:1

共引文献2

同被引文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部