期刊文献+

基于激光雷达深度信息和视觉HOG特征的车辆识别与跟踪方法 被引量:3

Vehicle Detection and Tracking Method Based on LIDAR Depth Information and Visual HOG Fusion Feature
原文传递
导出
摘要 为提高无人车行驶过程中前方车辆检测的准确性和实时性,提出了基于激光雷达(LIght Detection And Ranging,LIDAR)深度信息和视觉方向梯度直方图(Histograms of Oriented Gradients,HOG)特征的车辆识别和跟踪方法。目标首次进入视野时,聚类处理激光雷达深度信息并确定假设目标的候选区域,采用车辆尾部的HOG特征对假设目标进行验证。在HOG特征验证前,基于最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)算法对样本集HOG特征进行训练学习,生成车辆分类器模型。对于验证后的目标车辆,采用激光雷达获取的深度信息对目标车辆进行持续跟踪。构建了2种车辆模型,结合最小二乘直线拟合方法提取出车辆特征,生成目标模型。同时,提出了基于多特征马氏距离的目标关联代价方程,实现了多目标的关联;完成了基于卡尔曼滤波的车辆状态滤波和位置估计,更新了跟踪器模型。通过有效的管理策略,实现了目标跟踪的3个状态:1)初始化模型的生成;2)跟踪过程中跟踪器的更新与预测;3)目标驶离视野时跟踪器的删除。最后,通过试验验证了跟踪算法的有效性。 In order to improve the veracity and instantaneity of preceding vehicle detection in the running process of UGV( Unmanned Ground Vehicle),a vehicle detection and tracking method based on depth information and visual HOG( Histograms of Oriented Gradients) feature of LIDAR( LIght Detection And Ranging) is proposed. When the target vehicle enters the vision of testing field for the first time,the LIDAR depth information is processed by clustering and the candidate area of the hypothetical target is determined,and the hypothetical target is verified by the HOG feature of the vehicle's tail. Before the HOG feature verification,the HOG feature of the sample set is trained and learned based on the Least Squares Support Vector Machine( LS-SVM) algorithm to generate the vehicle classifier model. For the verified target vehicle,the depth information acquired by the LIDAR is used to continuously track the target vehicle. Two vehicle models are constructed,and the vehicle features are extracted by the least square line fitting method to generate the target model. In addition,the target correlation cost equation based on multi-feature Mahalanobis distance is proposed to achieve multi-target correlation. The Kalman filtering is used to estimate the vehicle filter and position,and the tracker model is updated. Three statesof target tracking are realized by effective management strategy: generation of target initialization tracker,tracker update and prediction,and removal of the tracker when the target is out of view. Finally,the effectiveness of the tracking algorithm is verified by experiments.
出处 《装甲兵工程学院学报》 2017年第6期89-96,共8页 Journal of Academy of Armored Force Engineering
关键词 激光雷达(LIDAR) 视觉 车辆识别 车辆跟踪 数据关联 LIDAR vision vehicle detection vehicle tracking data association
  • 相关文献

参考文献4

二级参考文献31

  • 1刘大学,戴斌,李政,贺汉根.一种单线激光雷达和可见光摄像机的标定方法[J].华中科技大学学报(自然科学版),2008,36(S1):68-71. 被引量:15
  • 2Fayad F, Cherfaoui V. Tracking objects using a laser scanner in driving situation based on modeling target shape[C]//2007 IEEE Intelligent Vehicles Symposium. Istanbul, Turkey: IEEE, 2007: 44-49. 被引量:1
  • 3Strelle D, Dietmayer K. Object tracking and classification using a multiple hypothesis approach[C]// 2004 IEEE Intelligent Vehicles Symposium. Parma, Italy: IEEE, 2004: 808-812. 被引量:1
  • 4Mendes A, Nunes U. Situation-based multi-target detection and tracking with laserscanner in outdoor semistructured environment[C]//2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Sendai, Japan: IEEE, 2004: 88-93. 被引量:1
  • 5Wender S, Schoenherr M, Kaempchen N, etal. Classification of laserscanner measurements at intersection scenarios with automatic parameter optimization[C]// 2005 IEEE Intelligent Vehicles Symposium Proceedings. Las Vegas, American: IEEE, 2005: 94-99. 被引量:1
  • 6Fuerstenberg K C, Linzmeier D T, Dietmayer K C J. Pedestrian recognition and tracking of vehicles using a vehicle based multilayer laserscanner[C]//Proceedings of Ⅳ 2002, Intelligent Vehicles Symposium. Versailles, France: IEEE, 2004: 31-35. 被引量:1
  • 7BORGES G, ALDON M. Line extraction in 2D range images for mobile robotics [ J ]. Journal of Intelligent and Robotic Systems, 2004, 40: 267-297. 被引量:1
  • 8PREMEBIDA Cristiano. Segmentation and geometric primitives extraction from 2D laser range data for mobile robot applications[ R ]. Coimbra: University de Coimbra, 2005. 被引量:1
  • 9MARRON M, GARCIA J C, SOTELO M A, et al. Tracking muhiple objects using a Kalman filter and a probabilistic association process [ C ] // IEEE International Symposium on Industrial Electronics. Piscataway: IEEE, 2007 : 2135-2138. 被引量:1
  • 10REID D. An algorithm for tracking multiple targets [ J ]. IEEE Transactions on Automatic Control, 1979, AC-24 (6) : 843-854. 被引量:1

共引文献50

同被引文献42

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部