期刊文献+

Spin torque nano-oscillators with a perpendicular spin polarizer

Spin torque nano-oscillators with a perpendicular spin polarizer
下载PDF
导出
摘要 We present an overview in the understanding of spin-transfer torque(STT) induced magnetization dynamics in spintorque nano-oscillator(STNO) devices. The STNO contains an in-plane(IP) magnetized free layer and an out-of-plane(OP) magnetized spin polarizing layer. After a brief introduction, we first use mesoscopic micromagnetic simulations,which are based on the Landau–Lifshitz–Gilbert equation including the STT effect, to specify how a spin-torque term may tune the magnetization precession orbits of the free layer, showing that the oscillator frequency is proportional to the current density and the z-component of the free layer magnetization. Next, we propose a pendulum-like model within the macrospin approximation to describe the dynamic properties in such type of STNOs. After that, we further show the procession dynamics of the STNOs excited by IP and OP dual spin-polarizers. Both the numerical simulations and analytical theory indicate that the precession frequency is linearly proportional to the spin-torque of the OP polarizer only and is irrelevant to the spin-torque of the IP polarizer. Finally, a promising approach of coordinate transformation from the laboratory frame to the rotation frame is introduced, by which the nonstationary OP magnetization precession process is therefore transformed into the stationary process in the rotation frame. Through this method, a promising digital frequency shift-key modulation technique is presented, in which the magnetization precession can be well controlled at a given orbit as well as its precession frequency can be tuned with the co-action of spin polarized current and magnetic field(or electric field) pulses. We present an overview in the understanding of spin-transfer torque(STT) induced magnetization dynamics in spintorque nano-oscillator(STNO) devices. The STNO contains an in-plane(IP) magnetized free layer and an out-of-plane(OP) magnetized spin polarizing layer. After a brief introduction, we first use mesoscopic micromagnetic simulations,which are based on the Landau–Lifshitz–Gilbert equation including the STT effect, to specify how a spin-torque term may tune the magnetization precession orbits of the free layer, showing that the oscillator frequency is proportional to the current density and the z-component of the free layer magnetization. Next, we propose a pendulum-like model within the macrospin approximation to describe the dynamic properties in such type of STNOs. After that, we further show the procession dynamics of the STNOs excited by IP and OP dual spin-polarizers. Both the numerical simulations and analytical theory indicate that the precession frequency is linearly proportional to the spin-torque of the OP polarizer only and is irrelevant to the spin-torque of the IP polarizer. Finally, a promising approach of coordinate transformation from the laboratory frame to the rotation frame is introduced, by which the nonstationary OP magnetization precession process is therefore transformed into the stationary process in the rotation frame. Through this method, a promising digital frequency shift-key modulation technique is presented, in which the magnetization precession can be well controlled at a given orbit as well as its precession frequency can be tuned with the co-action of spin polarized current and magnetic field(or electric field) pulses.
作者 Cuixiu Zheng Hao-Hsau Chen Xiangli Zhang Zongzhi Zhang Yaowen Liu 郑翠秀;陈浩轩;张祥丽;张宗芝;刘要稳(Shanghai Key Laboratory for Special Artificial Microstructure Materials and Technology,School of Physics Science and Engineering,Tongji University,Shanghai 200092,China;Department of Optical Science and Engineering,Fudan University,Shanghai 200433,China)
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第3期60-70,共11页 中国物理B(英文版)
基金 supported by the National Basic Research Program of China(Grant No.2015CB921501) the National Natural Science Foundation of China(Grant Nos.11774260,51671057,and 11874120)
关键词 SPIN TORQUE nano-oscillators(STNOs) SPIN-TRANSFER TORQUE effect magnetic simulation spin torque nano-oscillators(STNOs) spin-transfer torque effect magnetic simulation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部