期刊文献+

基于压缩域的图象检索技术研究进展 被引量:11

A Review of Image Retrieval Techniques in the Compressed Domain
下载PDF
导出
摘要 压缩标准的出现 ,使得图象数据格式普遍为压缩格式 ,从而促进了压缩域内图象检索技术的迅速发展 .为了使人们对基于压缩域的图象检索技术有一概括了解 ,该文对目前的压缩域检索技术进行了回顾和讨论 :首先 ,介绍了图象检索系统的基本概念 ;然后 ,分类分析了不同压缩域的检索技术 ,包括变换域方法 (如傅立叶变换、离散余弦变换 (DCT)以及子带和小波变换 )和空域方法 (如矢量量化和分形等 ) ;接着 ,对这些检索方法进行了讨论和比较 ,并得出一些有用的结论 ;还举例介绍了基于压缩域图象检索技术的实际应用 ;最后对压缩域图象检索技术的研究发展及其应用前景指出了一些可能的方向 . The advent of compression standards, such as JPEG and MPEG, has led to the popularity of the compressed form of image data, and that has brought on the proliferation of image retrieval techniques in the compressed domain. In this paper, we make a comprehensive review and discussions on the compressed domain retrieval techniques proposed in the literature, including the lastest achievements in this field. First, we give the general concepts of the image retrieval technology. Secondly, we analyze different retrieval techniques, including transform domain techniques using Fourier transform, discrete cosine transform, subbands and wavelets, and spatial domain techniques using vector quantization and fractals. Thirdly, we discuss and compare these image retrieval techniques and draw some useful conclusions. In addition, an example application of image retrieval in the compressed domain is presented. Finally, we make a discussion on some open problems and point out possible directions for further research.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2003年第5期499-508,共10页 Journal of Image and Graphics
基金 国家自然科学基金项目 (60 172 0 2 5 ) 南京邮电学院"图象处理与图象通信"江苏省重点实验室项目 (K0 2 0 89)
关键词 压缩域 图象检索技术 压缩标准 图象处理 实时性 Computer image processing, Image retrieval techniques, Compressed domain, Discrete cosine transform(DCT), Wavelet, Vector quantization, Fractal
  • 相关文献

参考文献4

二级参考文献22

  • 1[1]M.Flickner,H.Sawhney,Query by Image and Video Content:The QBIC Syste m[C].Computer,1995,28:23~32. 被引量:1
  • 2[2]S.F.Chang,Compressed domain techniques for image/video indexing an d manipulation[C].IEEE International Conference on Image Processing,1995,(10) :314~317. 被引量:1
  • 3[3]S.W.Smoliar and H.J.Zhang,Contentbased Video indexing and Retrieval [J].IEEE Multimedia,1994,1(2). 被引量:1
  • 4[4]Jason Hyon,Sugi Sorensen, Mike Martin, Kristy Kawasaki, A WWWbased A rchive and Retrieval System for Multimedia Production[C]. SPIE Proc. Of Mult imedia Computing and Networking, 1996,(2916):23~32 . 被引量:1
  • 5[5]R.M.Bolle, B.L.Yeo, M.M.Yeung, Video query Research directions[J]. IBM Journal of Research and Development,1998,3(42). 被引量:1
  • 6[6]J.Smith and Shih Fu Chang.An Image and Video Search Engine for the W orld-Wide Web[C].Proceedings of SPIE,1997,(3022).Storage and Retrieval for I mage and Video Database. 被引量:1
  • 7[7]MPEG-1,Coding of moving pictures and associated audio[R].T ech.Report,Committee Draft of Standard ISO 11172,1990. 被引量:1
  • 8[8]MPEG-2,Information technology-generic coding of moving pictures and associated audio[R].Tech.Report,ISO/IEC 13818-2,Committee Draft,1994,3. 被引量:1
  • 9[9]MPEG-4,Information technology-generic coding of audio-visual obJects [S].Final Draft of International Standards, ISO/IEC 14496-2,1998,(2). 被引量:1
  • 10[10]MPEG-7, Context and objectives[S]. ISO/IEC JTC1/SC29/WG11 N2460 ,1998,10. 被引量:1

共引文献58

同被引文献93

  • 1余卫宇,谢胜利,余英林,潘晓舟.语义视频检索的现状和研究进展[J].计算机应用研究,2005,22(5):1-7. 被引量:14
  • 2张永生.遥感图像信息系统[M].北京:科学出版社,2000.4-14. 被引量:52
  • 3[2]Aslandogan Y A,Yu C T.Techniques and Systems for Image and Video Retrieval[J].IEEE Transaction on Knowledge and Data Engineering,1999,11(1):56-63. 被引量:1
  • 4[4]Luis M,Cura V,Leite N J,Medeiros C B.An Architecture for Contentbased Retrieval of Remote Sensing Images[J].IEEE International Conference On Multimedia and Expo(I),2000,9(3):303-306. 被引量:1
  • 5[5]Chang.S.K.Pictorial Database Systems[J].IEEE Computer,1981 (11):13-31. 被引量:1
  • 6[6]Chang S K,Yan C W,Dimitroff D C,Arndt T.An Intelligent Database System[J].IEEE Trans on Software Engineering,1998(14):681-688. 被引量:1
  • 7[7]Seidel K,Mastropietro R,Datcu M.New Architecture for Remote Sensing Image Archives[C]//Proc.of IGARSS'97,2001. 被引量:1
  • 8[8]Agouris P,Stefanidis A.Intelligent Image Retrieval Large Database Using Shape and Topology[J].IEEE International Conference on Image Proeessing(ICIP)'98,1998(2):779-783. 被引量:1
  • 9[9]Sudipto Guha,Rajeev Rastogi,Kyuseok Shim.CURE:An Efficient Clustering Algorithm for Large Database[C]//SIGMOD'98 Seattle,WA,USA,1998. 被引量:1
  • 10[10]Chang S F.Indexing of Multimedia Data.Multimedia Database in Perspective[R].1997. 被引量:1

引证文献11

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部