摘要
According to the principle of the magnetostriction generating mechanism, thecontrol model of giant magnetostriction material based on magnetic field and the control method withmagnetic flux density are developed. Furthermore, this control method is used to develop a giantmagnetostrictive micro-displacement actuator (GMA) and its driving system. Two control methods whosecontrol variables are current intensity and magnetic flux density are compared with each other byexperimental studies. Finally, effective methods on improving the linearity and control precision ofmicro-displacement actuator and reducing the hysteresis based on the controlling magnetic fluxdensity are obtained.
According to the principle of the magnetostriction generating mechanism, thecontrol model of giant magnetostriction material based on magnetic field and the control method withmagnetic flux density are developed. Furthermore, this control method is used to develop a giantmagnetostrictive micro-displacement actuator (GMA) and its driving system. Two control methods whosecontrol variables are current intensity and magnetic flux density are compared with each other byexperimental studies. Finally, effective methods on improving the linearity and control precision ofmicro-displacement actuator and reducing the hysteresis based on the controlling magnetic fluxdensity are obtained.
基金
National Natural Science Foundation of China(No.50275021)
Doctoral Foundation of Education Ministry(No.2000014109)