期刊文献+

等离子与钨极双面电弧焊接热过程的数值模拟 被引量:3

NUMERIC SIMULATION OF HEAT TRANSFER PROCESS IN DOUBLE-SIDED ARC (PAW+TIG) WELDING
下载PDF
导出
摘要 利用由等离子电弧(PAW)与钨极电弧(TIG)构成的单电源双面电弧焊接(DSAW)工艺可以获得深宽比较大的焊缝,该工艺具有高效、低成本的特点,是一种先进焊接技术。本文综合考虑影响等离子弧小孔形成的等离子流力、重力、表面张力等力学因素,建立了小孔形成过程的数学模型,并以此为基础建立了DSAW电流密度分布和焊接传热的控制方程。采用数值模拟技术对上述方程进行耦合求解,定量分析了双面电弧焊接条件下的传热规律及热影响区性能,同时作为对比也模拟了PAW焊接的传热现象,揭示了DSAW大幅度增加熔深、改善热影响区性能的机理,为工艺参数优化设计提供了依据。 Comparatively deep and wide welds can be attained in double-sided arc welding (DSAW) with single power supply consisting of PAW (plasma-arc) and TIG (tungsten-arc). PAW+TIG double-sided arc welding is an advanced manufacturing technology with the performance of high efficiency and low cost. The mathematic models of keyhole formation are established after synthetically considering the dynamic factors, such as plasma arc pressure, gravity and surface tension etc., which affect the keyhole formation in plasma-arc welding. On the basis of those models, the cybernetic equations describing the current density distribution and heat transfer of DSAW are relatively established. Coupling consequences of those equations can be attained with the numeric simulation technology. Furthermore, rules of heat transfer and performance of HAZ in double-sided arc welding are quantitatively analyzed. Meanwhile, as a comparison, the phenomenon of heat transfer in PAW is also simulated. Consequently, the principles of greatly deepening weldpool and improving HAZ performance are disclosed and the bases for designing and optimizing the welding process parameters are provided.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2003年第5期499-504,共6页 Acta Metallurgica Sinica
基金 美国国家自然科学基金 DMI 9812981
关键词 双面电弧焊接 温度场 热影响区 数值模拟 double-sided arc welding (DSAW), temperature field, heat affect zone numeric simulation
  • 相关文献

参考文献4

二级参考文献9

共引文献25

同被引文献41

  • 1殷树言,徐鲁宁,丁京柱.熔化极气体保护焊的高效化研究[J].焊接技术,2000,29(z1):4-7. 被引量:22
  • 2齐志扬,张兆伍.微机控制热丝GTA全位置焊管系统[J].焊接学报,1994,15(1):23-29. 被引量:3
  • 3陈树君,王学震,华爱兵,殷树言.磁控电弧旋转磁场发生装置的设计[J].电焊机,2006,36(5):47-50. 被引量:13
  • 4[1]Richardson M, Hart P, Lucas J,Woodward N, Nixon J H, Smith J S. Arc and weld pool viewing: An assessment of requirements for deep water welding operations [J]. Eighth International Conference on Computer Technology in welding Liverpool, UK, 1988(6): 10~27 被引量:1
  • 5[2]Richardson I M , Nixon J H, Nosal P, Hart P, Billingham J. Hyperbaric gma welding to 2500m water depth [J]. Proceedings of ETCE/OMAE2000 Joint Conference Energy for the New Millenium,2000(2):927~936 被引量:1
  • 6[3]Suga Y. On the arc welding under high pressure argon and helium atmosphere [M]. Welding Under Extreme Conditions. Oxford: Pergamon Presss, 1989. 445~540 被引量:1
  • 7[4]Yoji Ogawa, Takao Morita, Jun Matsuda, Zhimao Yang. Arc behavior under extreme condition [J]. Materials Science Forum Vols,2003 (3): 426~432 被引量:1
  • 8[7]Gunter Speckhofer and Hans-Peter Schmidt, Member, IEEE. Experimental and theoretical investigation of high-pressure arcs-Part II: The magnetically deflected arc (Three-Dimensional Modeling)[J]. IEEE transactions on plasma science,1996(4):1239~1248 被引量:1
  • 9[8]Hans-Peter Schmidt, Member, IEEE, and Gunter Speckhofer. Experimental and theoretical investigation of high-pressure arcs-Part I: The Cylindrical arc column (Two-Dimensional Modeling)[J]. IEEE transactions on plasma science,1996(4):1178~1186 被引量:1
  • 10[9]Departamento de Fisica, Universidade da Mdeira, Largo do Municipio. Heating of refractory cathodes by high-pressure arc plasmas: I [J]. Applied Physics,2002(4):1736~1745 被引量:1

引证文献3

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部