摘要
E3 ubiquitin ligases are involved in various physiological processes,and they play pivotal roles in growth and development.In this study,we identified a previously unknown gene in the apple fruit(Malus×domestica)and named it MdMIEL1.The MdMIEL1 gene encoded a protein that contained a zinc-finger domain at its N-terminus and a RING-finger motif at its C-terminus.To investigate MdMIEL1 functions,we generated transgenic Arabidopsis lines expressing the MdMIEL1 gene under the control of the Cauliflower mosaic virus 35S promoter.Interestingly,ectopic expression of MdMIEL1 in Arabidopsis produced multiple phenotypes,including early germination,early flowering and a lateral root number increase relative to wild-type plants.Further analysis indicated that MdMIEL1 regulated lateral root initiation by increasing auxin accumulation in the roots.In a word,these results suggest that,MdMIEL1 as a novel RING-finger ubiquitin ligase influences plant growth and development,and highlight that MdMIEL1 regulates lateral root growth.
E3 ubiquitin ligases are involved in various physiological processes,and they play pivotal roles in growth and development.In this study,we identified a previously unknown gene in the apple fruit(Malus×domestica)and named it MdMIEL1.The MdMIEL1 gene encoded a protein that contained a zinc-finger domain at its N-terminus and a RING-finger motif at its C-terminus.To investigate MdMIEL1 functions,we generated transgenic Arabidopsis lines expressing the MdMIEL1 gene under the control of the Cauliflower mosaic virus 35S promoter.Interestingly,ectopic expression of MdMIEL1 in Arabidopsis produced multiple phenotypes,including early germination,early flowering and a lateral root number increase relative to wild-type plants.Further analysis indicated that MdMIEL1 regulated lateral root initiation by increasing auxin accumulation in the roots.In a word,these results suggest that,MdMIEL1 as a novel RING-finger ubiquitin ligase influences plant growth and development,and highlight that MdMIEL1 regulates lateral root growth.
基金
supported by National Natural Science Foundation of China (31272142, 31325024, 31471854)
Ministry of Education of China (IRT15R42)