期刊文献+

一类非线性拋物变分不等式解的存在性

The Existence of Solutions to a Class of Nonlinear Parabolic Variational Inequalities
原文传递
导出
摘要 本文研究了一类基于非线性抛物算子的变分不等式问题.首先,通过拓展偏微分方程的弱解理论定义了变分不等式的弱解.其次,利用惩罚函数并结合连续方法,证明了变分不等式存在弱解. In this paper,we study a class of variational inequalities with the nonlinear parabolic operators.First,the weak solutions of the variational inequalities are defined.Second,the existence of the solutions in the weak sense is proved by using the penalty method and the reduction method.
作者 李志广 LI ZHIGUANG(School of Mathematics and Computer Science,Shanghai Datong University,Datong 037009,China)
出处 《应用数学学报》 CSCD 北大核心 2019年第4期550-563,共14页 Acta Mathematicae Applicatae Sinica
基金 山西省自然科学基金(No.2008011002-1) 山西省高等教育发展基金(No.20101109 20111020)资助项目
关键词 非线性抛物变分不等式 弱解 惩罚方法 存在性 parabolic variational inequality weak solution penalty method existence
  • 相关文献

参考文献1

二级参考文献16

  • 1Chang M and Pemy M, An approximation schem for Black-Scholes equation with delays, Journal of Systems Science and Complexity, 2010, 23(2): 145-166. 被引量:1
  • 2Han J, Gao M, Zhang Q, et al., Option prices under stochastic volatility, Appl. Math. Lett., 2013, 26(1): 1-4. 被引量:1
  • 3Thavaneswaran A, Appadoo S S, and Frank J, Binary option pricing using fuzzy numbers, Appl. Math. Lett., 2013, 26(1): 65-76. 被引量:1
  • 4Zhang K and Wang S, Pricing American bond options using a penalty method, Automatiea, 2012, 48(3): 472-479. 被引量:1
  • 5Nielsen B F, Skavhaug O, and Tveito A, Penalty methods for the numerical solution of American multi-asset option problems, J. Comput. Appl. Math., 2008, 222(1): 3-16. 被引量:1
  • 6Chen X, Yi F, and Wang L, American look back option with fixed strike price 2-D parabolic variational inequality, J. Differential Equations, 2011, 251(1): 3063-3089. 被引量:1
  • 7Elliott R J and Hoek J, A general fractional white noise theory and applications to finance, Math. Finance, 2003, 13(1): 301-330. 被引量:1
  • 8Blanchet A, On the regularity of the free boundary in the parabolic obstacle problem application to American options, Nonlinear Anal., 2006, 65(1): 1362-1378. 被引量:1
  • 9Guasoni P, No arbitrage under transaction costs, with fractional Brownian motion and beyond, Math. Finance, 2006, 16(1): 569-582. 被引量:1
  • 10Biagini F and Hu Y, Stochastic Calculus for Fractional Brownian Motion and Applications, Springer, New York, 2008. 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部