摘要
进行了Hertz载荷作用下Von-Mises半无限空间的安定性研究。基于静力安定定理,通过寻找最佳残余应力场建立了平面应变条件下严格的安定极限解析方法。避免了以往安定分析方法的大型数学规划的困难,摆脱了计算中的维数障碍。研究结果表明:严格的安定极限值随着材料屈服应力的提高而增大,但随着摩擦系数的增大而减小;临界残余应力场全部位于两个界限以内,并且相交于临界点。当摩擦系数较小时,临界点发生在表面以下,随着摩擦系数逐渐增大到0.3,临界点从下层逐渐上移到表面。研究成果对安定理论应用于高速铁路设计具有参考意义。
This paper presents shakedown analysis of a half-space obeying Von-Mises criterion under Hertz loads in plane strain model. Based on the static shakedown theorem, a rigorous shakedown solution is established by searching for the best critical residual stress field. This method avoids the operation of mathematical programming in traditional method of shakedown analysis, and therefore obstruction since the large scale mathematical programming is overcome. It shows that both of the shakedown limit and rigorous shakedown limit increase with increasing the yield stress but decrease with the frictional coefficient. The critical residual stress fields all lie between two residual stress limits, which intersect beneath the surface for small value of μ, while tend to converge at the half-space surface when μ = 0.3, indicating that the failure mode of the material changes from subsurface failure to surface failure when increasing the frictional coefficient μ. This study has significance reference in application of shakedown analysis to the design of high-speed railway.
出处
《岩土工程学报》
EI
CAS
CSCD
北大核心
2017年第S2期232-235,共4页
Chinese Journal of Geotechnical Engineering
基金
国家自然科学基金面上项目(51478166)
"青蓝工程"资助项目
教育部留学回国人员科研启动基金资助项目
中央高校基本科研业务费专项资金资助项目(2015B17814
2015B25914)