期刊文献+

地下压气储能圆形内衬洞室内压和温度引起应力计算 被引量:18

Analytical approach for stress induced by internal pressure and temperature of underground compressed air energy storage in a circular lined rock cavern
下载PDF
导出
摘要 地下压气储能岩石内衬洞室内,不断变化的气体内压和温度引起的应力场是关乎洞室稳定性、耐久性的重要因素,由此提出了一种计算气压和温度引起应力变化的解析方法。将内衬洞室考虑成由密封层、衬砌和围岩组成,首先建立了洞室温度和气压求解的控制方程;利用拉普拉斯变换和叠加原理得到每个循环内洞室温度和气压随时间的变化;采用热弹性模型得到内压和温度引起的应力场。基于解析方法,给出了典型循环周期内洞室应力变化情况;接着通过一个热–力以及洞室气体耦合求解的数值模型以及不考虑密封层和衬砌的温度场解析方法来验证本文方法;最终探讨了温度对总应力的影响程度,以及不同换热系数的影响。结果表明:本文方法是可行的;温度和内压引起的密封层和衬砌内环向拉应力非常大;温度对于压气储能洞室有着不可忽略的作用,温度对于环向和纵向应力的影响程度要大于对径向应力的影响;换热系数对应力变化影响很大。 As the stress induced by varying temperature and air pressure is important for the stability and durability of underground compressed air energy storage in lined rock caverns, an analytical approach for the induced stress is proposed. The cavern with a sealing layer, concrete lining and host rock is considered, the governing equations for temperature and air pressure of the cavern are established. The temperature field and air pressure during the operation period are obtained using the Laplace transform and the principle of superposition. Then the induced stress variations are determined analytically by employing a thermo-elastic model. The stress induced during a typical operation cycle is illustrated. The approach is subsequently verified by a coupled compressed-air and thermo-mechanical numerical simulation and by a previous study for temperature. Finally, the influence of temperature on the total stress and the impact of heat transfer coefficient are discussed. The results reveal that the caused tensile hoop stresses in the sealing layer and concrete lining are quite large. Moreover, the temperature has a non-negligible effect on the lined cavern for underground compressed air storage, while the hoop and longitudinal stresses are affected by the temperature to a larger extent than the radial stress. In addition, the heat transfer coefficient affects the cavern stress to a high degree.
出处 《岩土工程学报》 EI CAS CSCD 北大核心 2014年第11期2025-2035,共11页 Chinese Journal of Geotechnical Engineering
基金 国家自然科学基金项目(51278378) 国家高技术研究发展计划(863计划)课题(SS2012AA052501)
关键词 压气储能 内衬洞室 温度 气体内压 应力 解析方法 compressed air energy storage(CAES) lined rock cavern temperature air pressure stress analytical approach
  • 相关文献

参考文献12

  • 1Mandhapati Raju,Siddhartha Kumar Khaitan.Modeling and simulation of compressed air storage in caverns: A case study of the Huntorf plant[J].Applied Energy.2011(1) 被引量:1
  • 2Roy Kushnir,Amos Ullmann,Abraham Dayan.Thermodynamic and hydrodynamic response of compressed air energy storage reservoirs: a review[J].Reviews in Chemical Engineering (-).2012(2-3) 被引量:1
  • 3Jonny Rutqvist,Hyung-Mok Kim,Dong-Woo Ryu,Joong-Ho Synn,Won-Kyong Song.Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage in lined rock caverns[J].International Journal of Rock Mechanics and Mining Sciences.2012 被引量:1
  • 4R. Kushnir,A. Dayan,A. Ullmann.Temperature and pressure variations within compressed air energy storage caverns[J].International Journal of Heat and Mass Transfer (-).2012(21-22) 被引量:1
  • 5张家荣,赵廷元编..工程常用物质的热物理性质手册[M].北京:新时代出版社,1987:416.
  • 6陈剑文,蒋卫东,杨春和,尹雪英,傅四乌,余克井.储气库注、采气过程热工分析研究[J].岩石力学与工程学报,2007,26(A01):2887-2893. 被引量:10
  • 7王志魁主编..化工原理 第3版[M].北京:化学工业出版社,2005:387.
  • 8李仲奎,马芳平,刘辉.压气蓄能电站的地下工程问题及应用前景[J].岩石力学与工程学报,2003,22(z1):2121-2126. 被引量:15
  • 9刘利强.拉普拉斯反变换的一种数值算法[J].内蒙古工业大学学报(自然科学版),2002,21(1):47-49. 被引量:11
  • 10Hyung-Mok Kim,Jonny Rutqvist,Dong-Woo Ryu,Byung-Hee Choi,Choon Sunwoo,Won-Kyong Song.Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance[J].Applied Energy.2011 被引量:1

二级参考文献27

  • 1卢洪发.空压储能发电在电力工业中的应用[J].电力建设,1995,16(7):57-57. 被引量:1
  • 2李仲奎,高翔,杜若超.压气新奥法隧洞施工技术及其在城市地下工程中的应用[J].岩石力学与工程学报,1995,14(1):75-84. 被引量:11
  • 3宣之强.中国盐矿资源与盐化工区研究[J].盐湖研究,1996,4(3):69-72. 被引量:5
  • 4李庆扬 王能超.数值分析[M].武汉:华中理工大学出版社,1982.. 被引量:87
  • 5[2]Nakhamkin M,Swensen E.Compressed air energy storage:survey of advanced CAES development[R].USA:ASME,1991,6~10 被引量:1
  • 6[4]Davis Lee,Howard John.Initial operation of the Alabama electric coop compressed air energy storage plant[A].In:Proceedings of the American Power Conference[C].USA:Illinois Institute of Technology,1993,1022~1024 被引量:1
  • 7[5]Schalge R A,Mehta Ben.Electric compressed air storage cavern from planning to completion[A].In:Proceedings of the American Power Conference[C].USA:Illinois Institute of Technology,1993,998~ 1 003 被引量:1
  • 8[6]Meyer Robert,Korinek Kenneth.Alabama electric cooperative compressed air energy storage project[A].In:Proceedings of International Exhibition & Conference for the Power Generation Industries[C].USA:Power-Gen,1991,1 565~1 571 被引量:1
  • 9[8]Shepard,Van der Linden.Compressed air energy storage adapts proven technology to address market opportunities[J].Power Engineering,2001,105(4):34~37 被引量:1
  • 10[9]Kawatani Takeshi,Saito Masahiko.Two-phase flow simulation of water sealing of compressed air storage under cyclic pressure change in an unlined rock cavern[A].In:International Association of Hydrological Sciences 265[C].New York:IAHS Publication,1999,432 ~438 被引量:1

共引文献31

同被引文献163

引证文献18

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部