期刊文献+

隧道衬砌裂缝特征提取方法研究 被引量:34

CHARACTERISTIC EXTRACTION OF CRACKS OF TUNNEL LINING
原文传递
导出
摘要 衬砌裂缝图像的分割和信息提取是裂缝自动检测系统中的重点。在采集图片大量试验的基础上对裂缝信息采集流程进行优化。其中,针对衬砌图像分割,提出结合prewitt算子和Otsu阈值的梯度类间阈值法,并用数学形态学对图片进行进一步优化,从而得到裂缝区域完整而杂质区域较少的二值图像;针对裂缝特征提取,通过对试验图片集合特征的分析确定描绘子为面积、周长、集中度、外接矩形长宽比、外接矩形占有率以及平均宽度。应用实例表明,梯度类间阈值法能够更好地实现对图像的分割,较常用的Otsu法更能适应复杂背景的裂缝图片。通过对优化图像的不同区域进行描绘特征提取统计,可形成具有一定代表性的图片库,为实现裂缝自动识别奠定基础。 The segmentation and characteristic extraction of lining crack image are essential for the automatic crack detection. The digital image processing analysis was optimized and some algorithms were improved based on the large number of collected images from tests. For the image segmentation,a new algorithm of binarization combining Prewitt operator with Otsu threshold was proposed. The binary image processed by the new algorithm,combined with the mathematical morphology resulted in the one with more complete fracture zones and less interference regions. For characteristic extraction, area, perimeter, compactness, rectangle degree, Feret's occupying rate and the mean width were defined as the morphological characteristics. The results of application showed that the integrated algorithm achieved the better image segmentation and was more suitable for the crack image with complex background. The characteristics extracted from the different regions in the image formed a representative information base and laid a foundation for automatic identification of cracks.
出处 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2015年第6期1211-1217,共7页 Chinese Journal of Rock Mechanics and Engineering
基金 国家自然科学基金资助项目(51278423 51478395)
关键词 隧道工程 PREWITT算子 Otsu阈值 二值图像 特征提取 tunnelling engineering Prewitt operator Otsu threshold image binarization characteristic extraction
  • 相关文献

参考文献13

  • 1重庆市交通委员会主编.公路隧道养护技术规范[M]. 人民交通出版社, 2003 被引量:3
  • 2Mohammad R. Jahanshahi,Sami F. Masri.Adaptive vision-based crack detection using 3D scene reconstruction for condition assessment of structures[J]. Automation in Construction . 2011 被引量:1
  • 3Je-Keun Oh,Giho Jang,Semin Oh,Jeong Ho Lee,Byung-Ju Yi,Young Shik Moon,Jong Seh Lee,Youngjin Choi.Bridge inspection robot system with machine vision[J]. Automation in Construction . 2009 (7) 被引量:1
  • 4Shahid Kabir,Patrice Rivard,Dong-Chen He,Philippe Thivierge.Damage assessment for concrete structure using image processing techniques on acoustic borehole imagery[J]. Construction and Building Materials . 2009 (10) 被引量:1
  • 5Seung-Nam Yu,Jae-Ho Jang,Chang-Soo Han.Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel[J]. Automation in Construction . 2006 (3) 被引量:1
  • 6Sunil K. Sinha,Paul W. Fieguth.Automated detection of cracks in buried concrete pipe images[J]. Automation in Construction . 2005 (1) 被引量:1
  • 7Ikhlas Abdel-Qader,Osama Abudayyeh,Michael E. Kelly.Analysis of Edge-Detection Techniques for Crack Identification in Bridges[J]. Journal of Computing in Civil Engineering . 2003 (4) 被引量:1
  • 8Tara C Hutchinson,ZhiQiang Chen.Improved Image Analysis for Evaluating Concrete Damage. Journal of Computing in Civil Engineering . 2006 被引量:1
  • 9Fujita, Yusuke,Hamamoto, Yoshihiko.A robust automatic crack detection method from noisy concrete surfaces. Machine Vision and Applications . 2011 被引量:1
  • 10Yamaguchi, Tomoyuki,Nakamura, Shingo,Saegusa, Ryo,Hashimoto, Shuji.Image-based crack detection for real concrete surfaces. IEEJ Transactions on Electrical and Electronic Engineering . 2008 被引量:1

共引文献2

同被引文献278

引证文献34

二级引证文献372

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部