期刊文献+

单样本的低分辨率单目标人脸识别算法 被引量:11

Low-resolution single object face recognition algorithm with single sample
下载PDF
导出
摘要 针对只给定单幅目标图像的情况下,而要在监控视频中查找出该目标人脸图像的问题,提出了一种单样本的低分辨率单目标人脸识别算法。考虑到待识别样本集中的目标与非目标对象数量严重不均衡,以及单目标问题无法利用不同类别间的互斥关系。首先在待识别样本集中,通过聚类算法,将单目标的识别问题转化为多目标识别问题,进而提高开集人脸识别算法的鲁棒性;其次,利用迭代标签传播算法不断优化待识别样本的归属类别;在迭代过程中,按照置信概率估计每个类别的人脸确认阈值,以解决单样本无法训练分类器的问题。在多个人脸数据集上的实验结果表明,该算法对于单目标的单样本的人脸识别精确率既能逼近100%,也具有较高的召回率。 Recognizing the target face from the surveillance video using the given single-target image is still a challenging issue in practical applications.Therefore,a low-resolution single-target face recognition algorithm with single-sample is proposed in this work.Two significant limitations are taken into consideration,the sample numbers of the target objects and non-target objects are seriously unbalanced in the probe set,and the single object problem cannot utilize the mutually exclusive relationship between different categories.In this paper,firstly,to increase the robustness of the open-face face recognition,the clustering algorithm is utilized to transform the single object recognition problem into a multi classification recognition problem.Furthermore,the iterative label propagation algorithm is applied to optimize the attribution probability of the probe sample continuously.During the iteration,the face recognition threshold of each object is estimated according to the confidence probability.Hence,the single sample is capable to train the classifier.Finally,experimental results on multiple face datasets show that the proposed algorithm can achieve good performances in both accuracy and recall rate.
作者 薛杉 朱虹 吴文欢 Xue Shan;Zhu Hong;Wu Wenhuan(School of Automation and Information Engineering,Xi'an University of Technology,Xi'an 710048,China;School of Electrical and Information Engineering,Hubei University of Automotive Technology,Shiyan 442002,China)
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第3期196-202,共7页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61771386 61801005 61673318)项目资助
关键词 单目标 单样本 低分辨率 人脸识别 single object single sample low-resolution face recognition
  • 相关文献

参考文献4

二级参考文献49

  • 1陈波,杨阳,沈田双.基于模糊聚类分析的边缘检测算法[J].仪器仪表学报,2006,27(z2):1603-1604. 被引量:5
  • 2ZANG M, WEN D, WANG K, et al. A novel topic feature for image scene classification [ J ]. Neurocomputing, 2015, 148(1) : 467-476. 被引量:1
  • 3DE SOUZA GAZOLLI K A, SALLES E O T. Exploring neighborhood and spatial information for improving scene classification [ J ]. Pattern Recognition Letters, 2014, 46(9) : 83-88. 被引量:1
  • 4ZHOU L, ZHOU Z, HU D. Scene classification using multi-resolution low-level feature combination [ J ]. Neurocomputing, 2013, 122(12) : 284-297. 被引量:1
  • 5SHAO L, LIU L, LI X. Feature learning for image classification via muhiobjective genetic programming[ J ]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(7): 1359-1371. 被引量:1
  • 6MENSINK T, VERBEEK J, PERRONNIN F, et al. Distance-based image classification: Generalizing to new classes at near-zero cost [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 ( 11 ) : 2624-2637. 被引量:1
  • 7JUNEJA M, VEDALDI A, JAWAHAR C V, et al. Blocks that shout: Distinctive parts for scene classification [ C ]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013 : 923-930. 被引量:1
  • 8VAILAYA A, FIGUEIREDO M, JAIN A, et al. Content- based hierarchical classification of vacation images [ C 1. IEEE International Conference on Multimedia Computing and Systems, 1999,1 : 518-523. 被引量:1
  • 9SZUMMER M, PICARD R W. Indoor-outdoor image classification [ C ]. IEEE International Workshop on Content-Based Access of Image and Video Database, 1998 : 42-51. 被引量:1
  • 10BENMOKHTAR R, HUET B, BERRANI S A. Low-level feature fusion models for soccer scene classification [ C 1. IEEE International Conference on Multimedia and Expo, 2008 : 1329-1332. 被引量:1

共引文献126

同被引文献90

引证文献11

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部