期刊文献+

Study on character recognition of Naxi Dongba hieroglyphs 被引量:4

Study on character recognition of Naxi Dongba hieroglyphs
下载PDF
导出
摘要 Naxi Dongba hieroglyphs of China are the only living hieroglyphs world widely which still in use.There are thousands of manuscripts written in Dongba hieroglyphs scattering in different counties for history reason.For culture protection and inheritance,those manuscripts are in urgent need to be recognized and organized quickly.This paper focuses on the recognition of Naxi Dongba hieroglyphs by using coarse grid method to extract features and using support vector machine to classify.The designed Experiment shows that the method performs better than the commonly used clustering method in recognition accuracy in recognition of Naxi Dongba hieroglyphs.This method also provides some experience for recognition of other hieroglyphs. Naxi Dongba hieroglyphs of China are the only living hieroglyphs world widely which still in use.There are thousands of manuscripts written in Dongba hieroglyphs scattering in different counties for history reason.For culture protection and inheritance,those manuscripts are in urgent need to be recognized and organized quickly.This paper focuses on the recognition of Naxi Dongba hieroglyphs by using coarse grid method to extract features and using support vector machine to classify.The designed Experiment shows that the method performs better than the commonly used clustering method in recognition accuracy in recognition of Naxi Dongba hieroglyphs.This method also provides some experience for recognition of other hieroglyphs.
出处 《Instrumentation》 2016年第1期61-69,共9页 仪器仪表学报(英文版)
基金 supported by Major Programs of National Social Science Funds of China(12&ZD234) supported by Education Committee of Beijing(71E1610959)
关键词 Naxi Dongba hieroglyphs CHARACTER RECOGNITION coarse GRID SUPPORT VECTOR MACHINE Naxi Dongba hieroglyphs character recognition coarse grid support vector machine
  • 相关文献

参考文献13

  • 1赵亮.一种改进的基于支持向量机的多类分类方法[J].计算机应用与软件,2014,31(12):233-236. 被引量:11
  • 2UNESCO.Convention on Preserving Intangible Cultural Heritages. . 2003 被引量:1
  • 3Chen Huaigui.Encyclopedia of Ancient Naxi society-Dongba Manuscripts. Yunnan File . 1999 被引量:1
  • 4GENG S B.Series of Naxi study. . 2008 被引量:1
  • 5DA M,ZHAO J Y,SUO G,et al.Online handwritten Naxi pictograph digits recognition system using coarse grid. Computer Science for Environmental Engineering and Ecolnformatics . 2011 被引量:1
  • 6Rajput G G,Horakeri R.Unconstrainedkannada handwritten character recognition using multi-level SVM classifier. Pattern Recognition and Machine Intelligence . 2013 被引量:1
  • 7Amara M,Zidi K,Zidi S,et al.Arabiccharacter recognition based M-SVM:review. Advanced Machine Learning Technologies and Applications . 2014 被引量:1
  • 8Al-Boeridi O N,Ahmad SMS,Koh S P.A scalable hybrid decision system (HDS)for Roman word recognition using ANN SVM:study case on Malay word recognition. Neural Computing and Applications . 2015 被引量:1
  • 9Gil A M,Costa M G F.Handwritten digit recognition using SVM binary classifiers and unbalanced decision trees. Image Analysis and Recognition . 2014 被引量:1
  • 10Kumar M,Sharma R K,Jindal M K.MDP Feature Extraction Technique for Offline Handwritten Gurmukhi Character Recognition. Smarter . 2013 被引量:1

二级参考文献21

  • 1哈力木拉提,阿孜古丽.多字体印刷维吾尔文字符识别系统的研究与开发[J].计算机学报,2004,27(11):1480-1484. 被引量:35
  • 2Douglas D,Peucker T.Algorithms for the reduction of the number ofpoints required to represent a digitized line or its caricature[J].TheCanadian Cartographer,1973,10(2):112-122. 被引量:1
  • 3边肇棋,等.模式识别[M].2版.北京:清华大学出版社,2007:235-237. 被引量:1
  • 4科尔曼,等.算法导论[M].2版.影印版.北京:高等教育出版社,2002:575-580. 被引量:1
  • 5Chin Chung Chang,Chih Jenlin.LIBSVM:A Library for Support Vec-tor Machines 2004. 被引量:1
  • 6Margner V,Pechwitz M,El Abed H.ICDAR 2005 Arabic Handwrit-ing Recognition Competition[C]//Proc.of the 8th Inter.Conf.onDocument Analysis and Recognition(ICDAR),2005,1:70-74. 被引量:1
  • 7Vapnik V.Statistical Learning Theory[M].Wiley,New York,1998. 被引量:1
  • 8Fumitake T,Shigeo A.Decision-tree-based multiclasssupport vector machines[C]//Proceedings of the 9thInternationl Conference on Neural Information Processing,Singapore:IEEE,2000:1418-1422. 被引量:1
  • 9Gjorgji Madzarov,Dejan Gjorgjevikj,Ivan Chrbev.A Multi-class SVM Classifier Utilizing Binary Decision Tree[D].Department of Computer Science and Engineering Faculty of Electrical Engineering and Information Technology,2009:233-241. 被引量:1
  • 10Liu Y H,Chen Y T.Face recognition using total margin-based adaptive fuzzy support vector machines[J].IEEE Trans on Neural Network,2007,18(1):178-192. 被引量:1

共引文献12

同被引文献37

引证文献4

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部