期刊文献+

遥感地表温度降尺度方法比较——性能对比及适应性评价 被引量:28

Downscaling remotely sensed land surface temperatures:A comparison of typical methods
原文传递
导出
摘要 在归纳现有遥感地表温度降尺度方法的基础上,选取3种代表性方法:Normalized Difference Vegetation Index(NDVI)、Pixel Block Intensity Modulation(PBIM)和Linear Spectral Mixture Model(LSMM)方法进行实验比较,并建立了一种纹理相似性度量指标CO-RMSE(Co-Occurrence Root Mean Square Error)。结果表明:(1)NDVI方法受季节影响最严重,不适于春、冬季,其次为PBIM方法;(2)LSMM方法受分辨率限制最大,低分辨率时丢失大量纹理信息,NDVI方法在较高分辨率时优于PBIM方法,较低分辨率时则相反;(3)3种方法的适用区域分别为植被与裸土像元并存区域,山区和反照率变化较大区域,以及类别间温差较大区域;(4)NDVI方法操作最简单,LSMM方法最复杂。分析认为,尺度因子是决定方法性能的关键,应根据季节、分辨率、地表覆盖、应用目的和操作性等综合选择。 Remotely sensed Land Surface Temperatures (LSTs) usually have low spatial resolutions. Downscaling is an effective technique to enhance the spatial resolutions. Current methods for downscaling remotely sensed LSTs were summarized. Using satellite data, we made an inter-comparison among three typical methods, including the Normalized Difference Vegetation Index (NDVI) method, the Pixel Block Intensity Modulation (PBIM) method, and the Linear Spectral Mixture Model (LSMM) method. We further designed an index, Co-Occurrence Root Mean Square Error (CO-RMSE), for measuring the textural similarity in inter-comparisons. Results indicate that (1) the performance of the NDVI method is most affected by the season, followed by the PBIM method; (2) the performance of the LSMM method is most influenced by the spatial resolution; the NDVI method has an advantage over the PBIM method at high resolutions, while at low resolutions, the performance of the PBIM method is better than that of the NDVI method; (3) these three methods are suitable for areas with combination of vegetation and bare ground, areas with varied topography and albedo, and areas with distinct LST differences in different classes, respectively; (4) the NDVI method is the easiest to implement, while the LSMM method is the most difficult. Further analysis showed that scale factor is the key issue to the LST downscaling and it needs to be carefully selected regarding the season, spatial resolution, land cover, application and the operability.
出处 《遥感学报》 EI CSCD 北大核心 2013年第A02期374-387,361,共27页 NATIONAL REMOTE SENSING BULLETIN
基金 国家自然科学基金(编号:41071258) 地表过程与资源生态国家重点实验室开放基金(编号:2010-ZY-06) 高等学校博士学科点专项科研基金(编号:20100003110018)~~
关键词 地表温度 降尺度 尺度因子 CO-RMSE land surface temperature, downscaling, scale factor, CO-RMSE
  • 相关文献

同被引文献252

引证文献28

二级引证文献272

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部