期刊文献+

一维半导体流体动力学模型的解的逐点估计(英文)

The Pointwise Estimates of Solution for One-dimensional Hydrodynamic Model for Semiconductors
下载PDF
导出
摘要 讨论了一维半导体流体动力学模型 ,得到了小初值情况下Cauchy问题解的整体存在性和解的逐点估计 。 A one-dimensional hydrodynamic model for semiconductor devices is studied.The global existence and pointwise estimates of the solutions to Cauchy problem with small data for one-dimensional Euler-Possion (or hydrodynamic) model for semiconductor devices in the simple isentropic case are obtained.Our approach is based on a detailed analysis for the Green's function of theirs associated linearized system and some energy estimates.
作者 黎野平
机构地区 咸宁学院数学系
出处 《咸宁学院学报》 2003年第6期1-5,共5页 Journal of Xianning University
基金 AcademicResearchProject(A) (k2 0 0 117)
关键词 半导体 流体动力学模型 GREEN函数 逐点估计 Semiconductors Hydrodynamic model Green function Pointwise estimates
  • 相关文献

参考文献1

二级参考文献13

  • 1P. Degond and P. A. Markowich. On a one-dimensional steady-state hydrodynamics model[J]. Appl.Math. Lett.. 1990, 3: 25~29. 被引量:1
  • 2P. A. Markowich. On steady-state Euler-Possion model for semiconductors[J]. Z. Aneg. Math. Phs..1991, 62: 389~407. 被引量:1
  • 3I. M. Gamba. Stationary transonic solution for a one-dimensional hydrodynamic model for semiconductors[J]. Comm. Partial Differential Equations. 1992, 17.- 553~577. 被引量:1
  • 4B. Zhang. Convergence of the Godunov scheme for a simplified one-dimensional hydrodynamic model for semiconductor deviees[J]. Comm. Math. Phys.. 1993, 157: 1~22. 被引量:1
  • 5F. Jochmann. Global weak solutions of the one-dimensional hydrodynamic model for semiconductors[J]. Math. Models Meth. In Appl. Sci.. 1994, 3: 759~788. 被引量:1
  • 6Zhang B.. On a local existence theorem for a simplified one-dimensional hydrodynamic model of semiconductor deviees[J]. SIAM J. Math. Anal.. 1994, 25: 941~947. 被引量:1
  • 7P. Marcati and R. Natalini. Weak solutions to a hydrodynamic model for semiconductors:the Cauchy problem[J]. Proc. Royal Soc. Edinburgh. 1995, A(125): 115~131. 被引量:1
  • 8P. Marcati and R. Natalini. Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation[J]. Arch. Rat. Mech. Anal.. 1995, 129: 129~145. 被引量:1
  • 9W. Fang and K. Ito. Steady-state solutions of a one-dimensional hydrodynamic model for semiconductors[J]. J. Differential Equations. 1997, 133: 224~244. 被引量:1
  • 10W. Fang and K. Ito. Weak solutions to a one-dimensional hydrodynamic model of two carrier types for semiconductors[J]. Nonlinear Anal. Meth. Appl.. 1997, 28: 947~963. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部