摘要
The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimization relationship. The use of six fuzzy logic controllers(6FLCs) is proposed for dynamic control genetic operating parameters of a symbolic-coded GA. This paper uses AGA based on 6FLCs to deal with the travelling salesman problem (TSP). Experimental results show that AGA based on 6FLCs is more efficient than a standard GA in solving combinatorial optimization problems similar to TSP.
遗传算法的性能主要取决于算法对满意解的搜索和优化的能力。本文提出的自适应遗传算法可以自动均衡搜索和优化关系。该算法采用六个模糊控制器对符号编码遗传算法的遗传操作实施动态参数控制。对旅行商( TSP)问题的求解结果表明该算法在解决类似于