期刊文献+

装备研制中基于Bayesian网的数据挖掘

Data Mining in Equipment Development Based on Bayesian Network
下载PDF
导出
摘要 提出采用Bayesian网挖掘装备研制中的试验数据;采用列联表的方法,对独立性检验中基于信息论的方法进行了改进,使确定网络拓扑结构的过程更加客观;挖掘得到Bayesian网后,探讨了其在失效源判定和发现系统设计缺陷等方面的应用. Bayesian networks is proposed in this paper for the data mining of the experiment data in arming development. Different from the approach based on information theory, we amend independence test by contingency table technique to construct the topology structure of Bayesian networks in a more objective way. After the discovery of the Bayesian networks, we probe into its application in fault origin ascertainment and design bugs finding.
出处 《装备指挥技术学院学报》 2003年第6期96-100,共5页 Journal of the Academy of Equipment Command & Technology
关键词 数据挖掘 BAYESIAN网 贝叶斯网 装备研制 失效源判定 data mining Bayesian network equipment development fault origin determination
  • 相关文献

参考文献4

  • 1邢永康,沈一栋.信度网中条件概率表的学习[J].计算机科学,2000,27(10):88-92. 被引量:7
  • 2David Heckerman,Dan Geiger,David M. Chickering.Learning Bayesian Networks: The Combination of Knowledge and Statistical Data[J].Machine Learning.1995(3) 被引量:1
  • 3Pablo H I.Real time intelligent sensor validation[].IEEE Transactions on Power Systems.2001 被引量:1
  • 4Pearl J.Belief networks revisited[].Artificial Intelligence.1993 被引量:1

二级参考文献14

  • 1[1]Spirtes P,et al. Causation,Prediction,and Search. SpringVerlag,New York 1993 被引量:1
  • 2[2]Fisher R A. Theory of Statistical Estimation. In:Proc. Of the Cambridge Philosophical Society, 1925,22: 700~715 被引量:1
  • 3[3]Dawid A P,Lauritzen S L. Hyper Markov laws in the statistical analysis of decomposable graphical models. Annals of Statistics, 1993,21 (3) 被引量:1
  • 4[4]Dempster A,et al. Maximum likelihood form incomplete data via the EM algorithm. Journal of the Royal statistical Society, 1977 ,B39:1~38 被引量:1
  • 5[5]Russel S, et al. Local learning in probabilistic network with hidden variables. In: Proc. Of the 14-th IJCAI, Montreal, Canada, Morgan Kaufmann, 1995.1146~1152 被引量:1
  • 6[6]Lauritzen S. The EM algorithn for graphical association models with missing data. Computational Statistical and Data Analyses, 1995,19:191~201 被引量:1
  • 7[7]Bayes T R. An essay towards solving a problem in the doctrine of chance. Phil. Trans. Sic. , London, PP53,370, 1763 被引量:1
  • 8[8]Heckerman D. A Tutorial on Learning With Bayesian Networks: [Technial Report MSR-TR-95-06]. 1995 被引量:1
  • 9[9]Hrycej T. Gibbs Sampling in Bayesian Networks. Artificial Intelligence, 1990,46: 351~363 被引量:1
  • 10[10]York J. Use of the Gibbs sampling in expert systems. Artificial Intelligence, 1992,56:115~130 被引量:1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部