期刊文献+

增量式FCM聚类算法及应用

原文传递
导出
摘要 1引言商业数据仓库的数据,每天都在更新。发生数据更新时,就要重新进行数据挖掘,没有高效的挖掘技术,效率将无法满足商业需求。因此,使用增量挖掘比较合适,因为增量挖掘是在原有的模式的基础上进行的,可以利用原有的模式信息,效率很高。虽然目前有很多的聚类算法,但增量式的聚类算法的研究还比较少。Martin Ester等人最先提出了增量式聚类算法[1]。文[2]提出一种基于网络密度的增量聚类算法,其增量聚类思想与Martin Ester等人提出的比较相似,文[3][4]
作者 韦相 李瑞
出处 《信息与电脑(理论版)》 2013年第3期141-142,共2页 China Computer & Communication
关键词 聚类算法 FCM 增量
  • 相关文献

参考文献5

二级参考文献21

  • 1Han JW, Kambr M. Data Mining Concepts and Techniques. Beijing: Higher Education Press, 2001. 145-176. 被引量:1
  • 2Kaufan L, Rousseeuw PJ. Finding Groups in Data: an Introduction to Cluster Analysis. New York: John Wiley & Sons, 1990. 被引量:1
  • 3Ester M, Kriegel HP, Sander J, Xu X. A density based algorithm for discovering clusters in large spatial databases with noise. In:Simoudis E, Han JW, Fayyad UM, eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining.Portland: AAAI Press, 1996. 226-231. 被引量:1
  • 4Guha S, Rastogi R, Shim K. CURE: an efficient clustering algorithm for large databases. In: Haas LM, Tiwary A, eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. "73-84. 被引量:1
  • 5Agrawal R, Gehrke J, Gunopolos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining application. In: Haas LM, Tiwary A, eds. Proceedings of the ACM SIGMOD International Conference on Management of Data.Seattle: ACM Press, 1998.94-105. 被引量:1
  • 6Alexandros N, Yannis T,Yannis M. C^2P: clustering based on closest pairs. In: Apers PMG, Atzeni P, Ceri S, Paraboschi S,Ramamohanarao K, Snodgrass RT, eds. Proceedings of the 27th International Conference on Very Large Data Bases. Roma:Morgan Kaufmann Publishers, 2001. 331-340. 被引量:1
  • 7Berchtold S, Bohm C, Kriegel H-P. The pyramid-technique: towards breaking the curse of dimensionality. In: Haas LM, Tiwary A,eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. 142- 153. 被引量:1
  • 8Yu C, Ooi BC, Tan K-L, Jagadish HV. Indexing the distance: an efficient method to KNN processing. In: Apers PMG, Atzeni P,Ceri S, Paraboschi S, Ramamohanarao K, Snodgrass RT, eds. Proceedings of the 27th International Conference on Very Large Data Bases. Roma: Morgan Kaufmann Publishers, 2001. 421--430. 被引量:1
  • 9Bobrowski L, Bezdek J. C-means clustering with L1 and L∞ norms[J]. IEEE Transactions on systems, man andcybernetics, 1991,21: 545-554. 被引量:1
  • 10BezdekJ. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York: Plenum Press, 1981. 被引量:1

共引文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部