期刊文献+

基于Storm的大容量实时人脸检索系统

Large-Scale Real-Time Face Retrieval System Based on Storm
下载PDF
导出
摘要 针对公共安全领域能够获取的人脸图像数据急速增长,传统的人工方式辨别人物身份工作量大、实时性差、准确度低,本文设计了一种大容量实时人脸检索系统.该系统通过Storm分布式平台实现人脸抓拍图像的实时存储与检索,通过HBase分布式存储系统实现大容量非结构化人脸数据的存储与维护.多组实验结果表明,该系统具有良好的加速比,在大容量人脸图像数据检索场景下具有良好的可扩展性和实时性. The face image data that can be obtained in the field of public security has grown rapidly.The traditional manual method to identify people has large workload,poor real-time performance,and low accuracy.This study designs a large-scale real-time face retrieval system.The system implements the real-time storage and retrieval of captured face images through the distributed platform Storm,and implements the storage and maintenance of large-scale unstructured face data through the distributed storage system HBase.The results of multiple experiments show that the system has a good speedup,good scalability,and real-time performance in the application scenarios of large-scale face image data retrieval.
作者 王晨曦 范春晓 吴岳辛 WANG Chen-Xi;FAN Chun-Xiao;WU Yue-Xin(School of Electronic Engineering,Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处 《计算机系统应用》 2019年第3期93-98,共6页 Computer Systems & Applications
关键词 人脸检索 大容量 STORM 实时 face retrieval large-scale Storm real-time
  • 相关文献

参考文献6

二级参考文献37

  • 1WILEY K,CONNOLLY A,KRUGHOFF S. Astronomical image processing with Hadoop[A].San Francisco:Astronomical Society of the Pacific,2011.93-96. 被引量:1
  • 2ALMEER M H. Cloud Hadcop map reduce for remote sensing image analysis[J].Journal of Emerging Trends in Computing and Information Sciences,2012,(04):637-644. 被引量:1
  • 3WHITE T. Hadoop:the definitive guide[M].Sebastopol,CA:O'Reilly,2010.203. 被引量:1
  • 4DONG B,QIU J,ZHENG Q. A novel approach to improving the efficiency of storing and accessing small files on Hadoop:a case study by PowerPoint files[A].Washington,DC:IEEE Computer Society,2010.65-72. 被引量:1
  • 5SWEENEY C,LIU L,ARIETTA S. HIPI:a Hadoop image processing interface for image-based mapreduce tasks[D].Charlattesville:University of Virginia,2011. 被引量:1
  • 6CSURKA G,DANCE C,FAN L. Visual categorization with bags of keypoints[A].Berliin Springer,2004.22. 被引量:1
  • 7SIVIC J,ZISSERMAN A. Video Google:a text retrieval approach to object matching in videos[A].Washington,DC:IEEE Computer Society,2003.1470-1477. 被引量:1
  • 8LI F F,PERONA P. A Bayesian hierarchical model for learning natural scene categories[A].Washington,DC:IEEE Computer Society,2005.524-531. 被引量:1
  • 9LOWED G. Distinctive image features from scale-invariant keypoints[J].{H}International Journal of Computer Vision,2004,(02):91-110.doi:10.1023/B:VISI.0000029664.99615.94. 被引量:1
  • 10VALGREN C,LILIENTHAL A J. SIFT,SURF & seasons:appearance-based long-term localization in outdoor environments[J].{H}Robotics and Autonomous Systems,2010,(02):149-156. 被引量:1

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部