期刊文献+

基于贝叶斯网络模型的高校贫困生预测实证分析 被引量:8

Empirical Analysis on Poor Student Predict in College and University Based on Bayesian Network Model
下载PDF
导出
摘要 贝叶斯网络通过确定变量结点网络结构和参数学习来进行网络模型的概率推理,在样本数据不是过大的条件下能得到较精确的预测结果.从高校统一标准化的各数据平台中选取学生行为数据作为训练样本构建贝叶斯网络并进行参数学习得到推理模型,进而对高校学生的贫困程度进行预测,可以得出预测结果与实际样本对比没有显著差异,实现用数据分析精确判定高校学生的贫困程度水平. Bayesian network performs probabilistic inference for network model by determining variable node network structure and parameter learning,under the condition of sample data is not too big,an accurate prediction results can be obtained.The training sample data are selected from each data platform for the standardization of college and university student behavior,which is used to build a Bayesian network and to learn the parameters by the network to get the inference model,and then the poverty status of college students is predicted by the model.The predict results show that there are no significant differences between the predict results and the actual samples.Thus the poverty level of college student can be accurately determined by data analysis.
作者 李斌 王卫星 胡屹峰 王萍 LI Bin;WANG Wei-Xing;HU Yi-Feng;WANG Ping(Modern Education Technology Center, School of Information Engineering, Henan University of Science and Technology, Sanmenxia 472000, China)
出处 《计算机系统应用》 2019年第1期262-268,共7页 Computer Systems & Applications
基金 河南省教育厅高等教育教学改革与实践项目(2017SJGLX636) 河南省社科联 河南省经团联2018年度调研课题(SKL-2018-665)~~
关键词 贝叶斯网络 高校贫困生 预测 Bayesian network poor students predict
  • 相关文献

参考文献11

二级参考文献45

  • 1张剑峰,罗浪,赵燕,钟文翀.高校贫困生的界定[J].江西教育科研,2005(5):39-39. 被引量:63
  • 2张红霞,宋德昌.校园电子商务如何建[J].信息系统工程,2005,18(7):75-75. 被引量:10
  • 3赵炳起.高校贫困生认定机制——优化与重构[J].教育财会研究,2006,17(4):20-26. 被引量:153
  • 4Dey A K and Abowd G D. Towards a better understanding of context and context awareness. Technical Report GIT-GVU- 99-22, College of Computing, Georgia Institute of Technology 1999. 被引量:1
  • 5Wang X H, Dong J S, and Chin C Y, et al.. Semantic space: an infrastructure for smart spaces. IEEE Pervasive Computing, 2004, 3(3): 32-39. 被引量:1
  • 6Wang Xiaohang, Gu Tao, and Zhang Daqing, et al.. Ontology based context modeling and reasoning using OWL. Workshop on Context Modeling and Reasoning (CoMoRea) at IEEE International Conference on Pervasive Computing and Communication (PerCom'04), Orlando, Florida. March 14, 2004: 18-22. 被引量:1
  • 7Satyanarayanan M. Coping with uncertainty. IEEE Pervasive Computing, 2003, 2(3): 2. 被引量:1
  • 8Abdelsaiam W and Ebrahim Y. Managing uncertainty: modeling users in location-tracking applications. IEEE Pervasive Computing, 2004, 3(3): 60-65. 被引量:1
  • 9Ranganathan A, Al-Muhtadi J, and Campbell R H. Reasoning about uncertain contexts in pervasive computing environments. IEEE Pervasive Computing, 2004, 3(2): 62-70. 被引量:1
  • 10Gu T, Pung H K, and Zhang D Q. A Bayesian approach for dealing with uncertain contexts, http://www.comp.nus.edu. sg/-gutao/gutao_NUS/pervasive2004_gutao.PDF, April 2004. 被引量:1

共引文献88

同被引文献61

引证文献8

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部