期刊文献+

改进的支持向量预选取方法在语音识别中的应用(英文) 被引量:1

Improved Support Vector Pre-extracting Algorithm in Speech Recognition Application
下载PDF
导出
摘要 对于大规模数据量的语音识别问题,支持向量机的训练成为一个难题。预选取支持向量是解决这一难题的方法之一。提出一种新的支持向量预选取算法.一方面对原数据集的每类数据分别进行核模糊C均值聚类,将所有的聚类中心作为每类数据的表征集;另一方面根据支持向量的几何分布含义并借鉴支持向量机的多类分类算法中一对一方法的思路提取原数据集的边界样本作为预选取支持向量进行训练和预测,并将该算法应用于嵌入式语音识别系统中,实验结果表明:该方法提高了语音识别系统的训练效率,降低了计算代价,同时保持了较高的识别率。 Support vector machine(SVM) training is difficult for large-scale data set of speech recognition. A new SVM pre-extracting algorithm was proposed. On the one hand, kernel Fuzzy C-Means clustering was separately performed on each class of original data set. All the cluster centers were as a representative set of each class. On the other hand, according to the geometric distribution of support vectors and combined with the classification strategy of one-versus-one for SVM multi-class classification algorithm, boundary samples were extracted as support vectors for SVM to training and prediction. The algorithm was applied to embedded speech recognition system. Experiments indicate that this method improves the efficiency of training but also maintains the high recognition rate.
出处 《系统仿真学报》 CAS CSCD 北大核心 2015年第11期2714-2721,共8页 Journal of System Simulation
基金 Shanxi Scholarship Council of China(2009-28) Natural Science Foundation of Shanxi Province(2009011022-2)
关键词 支持向量 多类分类 核模糊C聚类 样本预选取算法 语音识别系统仿真 support vector multi-class classification kernel fuzzy C-Means clustering sample pre-extracting speech recognition system simulation
  • 相关文献

参考文献7

  • 1J. Sangeetha,S. Jothilakshmi.A novel spoken keyword spotting system using support vector machine[J]. Engineering Applications of Artificial Intelligence . 2014 被引量:1
  • 2A. Arruti,I. Mendialdua,B. Sierra,E. Lazkano,E. Jauregi.New <mml:mspace width="0.35em"/> One <mml:mspace width="0.35em"/> Versus One All method: NOV@[J]. Expert Systems With Applications . 2014 (14) 被引量:1
  • 3Investigation of the effect of data duration and speaker gender on text-independent speaker recognition[J]. Computers and Electrical Engineering . 2012 被引量:1
  • 4Osuna Edgar,Freund Robert,Girosi Federico.An improved training algorithm for support vector machines. Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing . 1997 被引量:1
  • 5Chang Huai You,Kong Aik Lee,Haizhou Li.An SVM Kernel With GMM-Supervector Based on the Bhattacharyya Distance for Speaker Recognition. Signal Processing Letters, IEEE . 2009 被引量:1
  • 6Zhifeng Hao,Shu Yu,Xiaowei Yang,et al.Online LS-SVM Learning for Classification Problems Based on Incremental Chunk. Lecture Notes in Computer Science . 2004 被引量:1
  • 7Palaniappan R,Sundaraj K,Sundaraj S.A comparative study of the svm and k-nn machine learning algorithms for the diagnosis of respiratory pathologies using pulmonary acoustic signals. BMC Bioinformatics . 2014 被引量:1

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部