期刊文献+

基于形态学边缘检测的枸杞外部缺陷识别方法 被引量:4

Recognition of Wolfberry Appearance Defects Based on Edge Detection of Morphology
下载PDF
导出
摘要 在基于机器视觉技术的枸杞外部缺陷识别过程中,样品数量过多且摆放密集,导致边界阴影与外部缺陷相互混淆,从而影响了识别的准确性。针对此问题,提出一种基于形态学边缘检测的枸杞外部缺陷识别方法。首先,通过二值化进行背景分割,提取存在边界阴影的果实图像。然后,以改进的自适应形态学梯度算子提取精确果实边界,进而对其填充并与样本图像做差运算,去除边界阴影。最后,对图像去噪并增强对比度,通过二值化筛选缺陷部位完成识别。实验结果表明,提出的方法正确率达到90%以上。该方法满足枸杞外部缺陷识别的实际需求,为进一步进行枸杞质量评价提供了有利条件。 In the recognition of the wolfberry appearance defects based on the technology of machine vision,samples are excessive and intensive,which causes a mutual confusion between border shadow and defect region and accordingly affects the recognition accuracy.To solve this problem,this paper puts forward a recognition method for wolfberry appearance defects by edge detection of morphology.Firstly,the binarization is applied to segment the background and extract the fruit region with boundary shadow.Secondly,a modified adaptive morphological gradient operator is used to obtain the precise boundaries of fruit.Thirdly,different operation is performed between the filled image and the sample image to extract precise fruit image for removing the boundary shadow.Finally,the resultant image is denoised and enhanced to improve its contrast.And the binarization is used to locate the appearance defects region for its recognition.The experiment results indicated that the correct rate is above 90%.The proposed method meets the practical demand of the recognition of wolfberry appearance defects and offers favorable conditions for its further quality evaluation.
作者 陈璞 刘立波
出处 《湖北工程学院学报》 2015年第6期32-37,共6页 Journal of Hubei Engineering University
基金 国家自然基金项目(61363054)
关键词 枸杞外部缺陷 边界阴影 缺陷区域识别 形态学边缘检测 wolfberry appearance defects boundary shadow recognition of defects region morphology edge detection
  • 相关文献

参考文献7

  • 1贺萌.基于自适应形态学的边缘检测及应用[D].中南大学2013 被引量:1
  • 2Thouraya Merazi-Meksen,Malika Boudraa,Bachir Boudraa.Mathematical morphology for TOFD image analysis and automatic crack detection[J]. Ultrasonics . 2014 被引量:1
  • 3Jiangbo Li,Xiuqin Rao,Fujie Wang,Wei Wu,Yibin Ying.Automatic detection of common surface defects on oranges using combined lighting transform and image ratio methods[J]. Postharvest Biology and Technology . 2013 被引量:1
  • 4Xuelong Hu,Min Zhang,Weiping Yang,Nan Jiang,Xiang Yin.Image De-noising and Granularity Detection Based on Morphology[J]. Physics Procedia . 2012 被引量:1
  • 5Arefi, Arman,Motlagh, Asad Modarres,Mollazade, Kaveh,Teimourlou, Rahman Farrokhi.Recognition and localization of ripen tomato based on machine vision[J]. Australian Journal of Crop Science . 2011 (10) 被引量:1
  • 6Sergio Cubero,Nuria Aleixos,Enrique Molta?o,Juan Ga?omez-Sanchis,Jose Blasco.Advances in Machine Vision Applications for Automatic Inspection and Quality Evaluation of Fruits and Vegetables. Food and Bioprocess Technology . 2011 被引量:1
  • 7Cǎliman A,Ivanovici M,Richard N.Probabilistic pseudo-morphology for grayscale and color images. Pattern Recognition . 2014 被引量:1

同被引文献70

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部