期刊文献+

用小波神经网络检测结构损伤 被引量:12

PREDICTION OF STRUCTURAL DAMAGE BY THE WAVELET-BASED NEURAL NETWORK
下载PDF
导出
摘要 用小波和神经网络ART2相结合的方法检测结构的损伤位置。给出了小波变换和人工神经网络的基本理论及其用于损伤检测的原理与特点。通过把小波变换作为神经网络的前处理来构造小波神经网络。首先通过数值试验检验了小波消噪和小波神经网络损伤检测的能力。然后在一个框架结构模型上进行了试验。实验证明这种方法使网络抗噪声能力增强,使损伤识别的效果更好。ART2网络具有自动从环境中学习的能力,能自动的给出新的识别输出。 The application of wavelet-based neural network ART2 to the damage detection of structure is discussed. A method combining dyadic wavelet with neural network of ART2 is presented and the damage location can be well identified with this method. The basic theories of artificial neural network and wavelet transform are given and their features and the principle of damage detection are analyzed. Wavelet-based neural network is constructed by taking wavelet transform as the pre-processor of neural network. Then the wavelet de-noise, the detection of changes of a signal and the ability of damage detection of wavelet-based neural network are tested by numerical samples. The effectiveness of this method is attested further by a model frame structure. The results show that the present method is feasible and it has advantages of few requirements of historical data, automatic increase of identification category, and the noiseproof ability.
出处 《工程力学》 EI CSCD 北大核心 2003年第6期176-181,共6页 Engineering Mechanics
关键词 损伤检测 小波神经网络 二进小波 ART2 damage detection artificial neural network dyadic wavelet ART2
  • 相关文献

参考文献7

  • 1X Wu, J Ghaboussi, et al. Use of neural networks in detection of structural damage[J]. Computers & Structures, 1992, 42(4): 649-659. 被引量:1
  • 2P Tsou, M H Herman Shen. Structural damage detection and identification using neural networks[J]. AIAA Journal, 1994, 32(1): 176-183. 被引量:1
  • 3J Rhim, S W Lee. A neural network approach for damage detection and identification of structures[J]. Computational Mechanics, 1995, 15: 437-443. 被引量:1
  • 4P C Kaminski. Approximate location of damage through the analysis of natural frequencies with artificial neural networkl [J]. J. of Process Mechanical Engineering, 1995, 209(E2): 117-123. 被引量:1
  • 5N Mitsuru, S F Masri, et al. Nonparameter damage detection in a multistory building through the use of neural networks[J]. Proceedings of the Second World Conference on Structural Control, Kyoto Japan, JOHN WILEY & SONS, 1998, (3):2343-2350. 被引量:1
  • 6郑君里 杨行峻.人工神经网络[M].北京:高等教育出版社,1992.. 被引量:35
  • 7杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000.. 被引量:151

共引文献184

同被引文献253

引证文献12

二级引证文献146

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部