期刊文献+

广义变分原理在高速铁路无缝道岔结构分析中的应用 被引量:4

APPLICATION OF GENERALIZED VARIATIONAL PRINCIPLES TO WELDED TURNOUT STRUCTURES OF HIGH-SPEED RAILWAY
下载PDF
导出
摘要 在继承现有试验成果的基础上,将广义变分原理应用于铁路无缝道岔结构体系的分析,提出了一种新的铁路无缝道岔计算理论。建立了较为完善的计算模型,在假设钢轨纵向位移函数的基础上,计算了无缝道岔结构体系各部分的能量,通过广义变分法建立了结构体系的平衡方程,编制了计算程序,分析了固定辙叉无缝道岔钢轨温度力与位移。为无缝道岔计算理论和设计方法的研究开辟一条新途径。 Based on existing experimental data and energy variation principle, generalized variational principle is used to analyse welded turnout structures of railway, and a new method for calculating welded turnout structures is presented. In the model, sleepers are regarded as finite long beams on continuous elastic foundation base, and the relation between rail forces and sleeper displacements is established by analysis of sleeper forces. The energy of welded turnout structures is computed based on assumed longitudinal displacement function of rail. By means of generalized variational methods, the equilibrium equation is derived. The additional temperature forces and the expanding and contracting displacements of the inner rails are analysed. This paper opens a new avenue for welded turnout calculation theory and design method.
出处 《工程力学》 EI CSCD 北大核心 2003年第5期194-199,共6页 Engineering Mechanics
关键词 高速铁路 广义变分法 能量原理 无缝道岔 high-speed railway generalized variational principle energy principle welded turnout of railway
  • 相关文献

参考文献13

  • 1Hellinger E. Die allgemeine Ansatz der Mechanil der Kontinua[M]. Encyclopadie der Mathematischen Wissenschaften, 1914, 4/4: 602. 被引量:1
  • 2Reissner E. On a variational theorem in elasticity[J]. Journal of Mathematics and Physics, 1950, 29(2):90. 被引量:1
  • 3胡海昌.论弹性体力学与受范性体力学中的一般变分原理[J].物理学报,1954,10(3):259-289. 被引量:15
  • 4Washizu K. On the variational principles of elasticity and plasticity, aeroelastic and structures research laboratory[R]. Massachusetts Institute of Technology, Technical Report, 1955. 25-18. 被引量:1
  • 5胡海昌著..弹性力学的变分原理及其应用[M].北京:科学出版社,1981:585.
  • 6钱伟长.弹性理论中广义变分原理的研究及其在有限元计算中的应用[J].力学与实践,1979,(1):16-24. 被引量:9
  • 7钱伟长.变分法和有限元(上册)[M].北京:科学出版社,1980.. 被引量:2
  • 8钱伟长著..广义变分原理[M].北京:知识出版社,1985:363.
  • 9Pian Th. H. H., Tong P, (卞学璜,董平) Finite Element Methods in Continuum Mechanics[J]. Advances in Applied Mechanics (edited by chia-shun yih), 1972, 12(1): 190. 被引量:1
  • 10龙驭球 辛克贵.广义协调元[J].土木工程学报,1987,1:1-14. 被引量:40

共引文献55

同被引文献37

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部