期刊文献+

T-染色和G_n^d图的T-边柞(Edge Span)

T-colorings and T-edge span of G_n^d
下载PDF
导出
摘要 给定一个包含0的有限正整数集T,一个简单图G的一个T-染色是定义在G的顶点集V(G)上的一个非负函数f,满足对任意的uv∈E(G)有|f(u)-f(v)| T.一个T-染色f的边柞(edgespan)定义为最大的|f(x)-f(y)|,xy∈E(G),一个图G的边柞(edgespan)是G的所有T-染色中最小的边柞(edgespan).这篇文章研究了当T={0,1,2,…,k-1}时,Gdn图的T-边柞(edgespan),找到了当n≡1(modd)时Gdn图的T-边柞(edgespan)的确切值,和其他情况下的上下界. Suppose G is a graph and T is a set of non-negative integers that contains -. A T-coloring of G is an assignment of a non-negative integer f(x) to each vertex x of G such that |f(x)-f(y)|T whenever xy ∈E(G). The edge span of a T-coloring f is the minimum value of the edge span of a T-coloring of G. This paper studies the T-edge span of the G^d_n for T={-,1,2,...,k-1}. In particular, we find the exact value of the T-edge span of G^d_n for n≡-,1 (mod d+1), and lower and upper bounds for other cases.
作者 王军秀
机构地区 安徽工业大学
出处 《纯粹数学与应用数学》 CSCD 2003年第4期361-364,共4页 Pure and Applied Mathematics
关键词 T-柞(span) T-边柞(edge span) T-染色 T-span, T-edge span, T-coloring
  • 相关文献

参考文献8

  • 1Cozzens N B,Roberts F S. T-colorings of graphs and the channel assignment problem[J]. Conger. Numerantium, 1982,35:191 ~ 208. 被引量:1
  • 2Lin D D F. T-colorings and the channel assignment problem[J]. Discrete Mat,1996,161(3) :198~205. 被引量:1
  • 3Shin-Jie Hu,Su-Tzu Juan,and Gerard J. Chang. T-colorings and T-Edge Spans of Graphs[J]. Graphs and Comb 1995,15(3) :295~301. 被引量:1
  • 4Vince A. Star chromatic number[J].Graph Theory,1998,12:551~559. 被引量:1
  • 5Griggs J R, Lin D D F. Channel Assignment Problem, Ph. D. D. Thesis[C]. Department of Mathematics, University of South Carolina, Columbia, SC, 1991. 被引量:1
  • 6Lin D D F. Graph Homomorphisms and the Channel Assognment Problem [C]. Ph. D. Thesis, Department of Mathematice, University of South Carolina, Colimbia, SC,1991. 被引量:1
  • 7Tesman B A. List T-colorings of graphs[J]. Discrete Appl. Mat, 1993,45(1):277~289. 被引量:1
  • 8Roberts F S. T-colorings of graphs :recent reuslts and open problems[J]. Discrete Math. , 1991,93(2):229~245. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部