期刊文献+

随机结构系统的一般实矩阵特征值问题的概率分析 被引量:12

Probability Analysis of Eigenvalue Problem with General Real Matrices in Random Structural Systems
下载PDF
导出
摘要 由于工程实际结构的复杂性和所用材料在统计上的离散性以及测量、加工、制造误差的存在,必然导致具有随机参数的随机结构振动系统,按结构参数的性质来划分,随机振动问题包括两方面内容:(1)确定结构问题;(2)随机结构问题。本文以现代数学理论为依托,研究了随机结构系统的一般实矩阵的特征值问题。根据Kronecker代数、向量值和矩阵值函数的灵敏度分析、一般二阶矩法和概率摄动技术给出了计算随机结构系统的一般实矩阵的特征值和特征向量的数值方法,可以有效地得出随机结构系统的一般实矩阵的特征向量的统计量,发展了2D矩阵值函数的随机结构系统的特征值问题概率分析理论。 Uncertainties in material properties and structural geometry are due to the manufacturing error, measurement inaccuracies or structure complexities. The uncertainties may be materialized by the randomness of the structural parameters, such as mass and stiffness. Inherent uncertainties in material properties and structural geometry certainly bring randomness of the mass and stiffness and stochastic eigenvalue problem. In random vibration, two main problems are compartmentalized by parameter uncertainties: (1)certain structures and (2)stochastic structures. The eigenvalue problem of general real matrices was researched in random structure system that it is from depending on modern mathematics theories. On the basis of Kronecker algebra, matrix calculus, generalized second-moment method, and probabilistic perturbation technique, the numerical method for stochastic eigenvalues and eigenvectors of general real matrices was given. The method can be used to solve the statistics values of stochastic eigenvalues and eigenvectors in random structure systems accurately and effectively. Probability analysis theory for eigenvalue problem of general real matrices with 2D matrix functions in random structural systems has been developed.
出处 《力学季刊》 CSCD 北大核心 2003年第4期522-527,共6页 Chinese Quarterly of Mechanics
基金 国家自然科学基金(50175043)
关键词 随机结构 一般实矩阵 随机特征值和特征向量 概率摄动技术 random structure systems general real matrix stochastic eigenvalues and eigenvectors probabilistic perturbation technique
  • 相关文献

参考文献9

  • 1张义民.机械振动力学[M].长春:吉林科学技术出版社,2000.. 被引量:25
  • 2Vanmarcke E, Shinozuka M, Nakagiri S, Schueller G, Grigoriu M. Random fields and stochastic finite element methods[J]. Structural Safety, 1986,3: 143-166. 被引量:1
  • 3Ibrahim R A. Structural dynamics with uncertainties[J]. Applied Mechanics Review, 1987,15(3):309-328. 被引量:1
  • 4Benaroya H, Rebak M. Finite element methods in probabilistic structural analysis: a selective review[J]. Applied Mechanics Review,1988,41 : 201-213. 被引量:1
  • 5Collins J D, Thomsom W T. The eigenvalue problem for structural systems with statistical properties[J]. AIAA J, 1969,7(4) :642-648. 被引量:1
  • 6Shinozuka M,Astill C J. Random eigenvalue problems in structural analysis[J]. AIAA J, 1972,10(4):456-462. 被引量:1
  • 7Nakagiri S, Takabake H, Tani S. Uncertain eigenvalue analysis of composite laminated plates by the stochastic finite element method[J]. Journal of Engineering for Industry,1987,109(2) 59-12. 被引量:1
  • 8Zhang Yi-min, Liu Er-duo, Liu Qiao-ling. Uncertain eigenvalue analysis by stochastic finite order method[C]. Proceedings of ICDVC,Beijing, P R China, 1990, July: 1030-1036. 被引量:1
  • 9Vetter W J. Matrix calculus operation and Taylor expansions[J]. SIAM Review, 1973 ,15 : 352-369. 被引量:1

共引文献24

同被引文献91

引证文献12

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部