摘要
证明了如下结论:设n为偶数,r和k为奇数,n>r>k>0,λ≥2为整数,λ*=2[(λ)/(2)]+1,r-λ*k>0,G是有n个点、边连通度为λ的r-正则图,若n<(r+2)(k+1),则G是k-对等图.
Let n > r > k > 0 with n even, r and k odd, let λ ≥ 2 be an integer, if G is a r
-regular graph of even order n and edge-connectivity λ, if r-λ*k>0 , where λ*== 2[λ/2]+1 and n<(r+2)(k+1) , then G is k -uniform.
出处
《烟台大学学报(自然科学与工程版)》
CAS
2003年第4期235-238,243,共5页
Journal of Yantai University(Natural Science and Engineering Edition)