期刊文献+

基于小波与高斯Markov随机场组合的轮廓纹理分割 被引量:1

Texture Segmentation of the Shapes Based on Combination Wavelet with Gaussian Markov Random Field
下载PDF
导出
摘要 为综合多尺度纹理模型和高斯型 Markov随机场纹理模型各自的优点 ,本文提出了组合这两种模型的方法 .Mallat的经验法、高斯型 Markov随机场纹理模型和组合方法的对比实验表明 ,当纹理结构包含微结构时 ,组合方法分割纹理轮廓的性能最好 . A composite method is proposed for synthesis of the respective merits of multi-scale texture models and Gaussian Markov random field texture models. Among Mallats experimental method, Gaussian Markov random field texture models and the composite texture method, the comparative experiments show that the segmentation performance of the composite method is best as texture contains macro-structures.
作者 刘传才
出处 《小型微型计算机系统》 CSCD 北大核心 2004年第1期68-71,共4页 Journal of Chinese Computer Systems
基金 国家 973项目 (G19980 3 0 60 0 )资助 福建省自然科学基金项目 (F0 0 0 13 )资助 福州大学科技发展基金研究项目(XKJ(QD)-0 121)资助
关键词 高斯Markov随机场 纹理分割 多分辨率 随机微分方程 多尺度 gaussian markov random fields texture segmentation multi-resolution stochastic difference equations multi- scale
  • 相关文献

参考文献13

  • 1[1]Haralick R M. Statistical and structural approaches to texture[J]. Proc. IEEE, 1979, 67(9): 768~804. 被引量:1
  • 2[2]Van Gool L, Dewaele P, Oosterlinck A. Texture analysis anno 1983[J]. Compu. Vis. Im. Process., 1985, 29(2): 336~356. 被引量:1
  • 3[3]Reed T R, du Buf J M H. A review of recent texture segmentation and feature extraction techniques[J]. CVGIP: Image Understanding, 1993, 57(3): 359~372. 被引量:1
  • 4[4]Tuceryan M, Jain A K. Texture analysis. Handbook pattern recognition and computer vision[M]. C. H. Chen, L. F. Pau, and P. S. P. Wand, eds., ch.2, Singapore: World Scientific, 1993, 235~276. 被引量:1
  • 5[5]Randen Trygve, Hus?y John H?kon. Filtering for texture classification: a comparative study[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1999, 21(4): 291~310. 被引量:1
  • 6[6]Lanterman Aaron D, Grenander Ulf, Miller Michael I. Bayesian segmentation via asymptotic partition functions[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2000, 22(4): 337~347. 被引量:1
  • 7[7]Mallat S. A theory for multiresolution signal decompsition: the wavelet representation[J]. IEEE Trans. On Patt. Anal. Mach. Intell., 1989 11(7): 674~694. 被引量:1
  • 8[8]Cohen F S, Fan Z, Patel M A. Classification of rotated and scaled textured images using guassian Markov random field models[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1988, 35(6): 691~702. 被引量:1
  • 9[9]Brockett R W. Least squares matching problems[J]. Linear Algebra and Its Applications, 1989, vols. 122~124, 761~777. 被引量:1
  • 10[10]Hardly G H, LittlewoodmJ E, Polya G. Inequalities[M]. Cambridge, Mass.: Cambridge University Press, 1934. 被引量:1

同被引文献24

  • 1章毓晋.图像分割[M].北京:科学出版社,2001.34. 被引量:222
  • 2Manian V,Michael D,Ramón V.Wavelet Features for Color Image Classification[C].In:Imaging and Geospatial Information Society 2000Annual Conference. 被引量:1
  • 3Mojsilovic A,Popovic M V,Rackov D M.On The Selection of an Optical Wavelet Basis for Texture Characterization[J].IEEE Trans Image Processing,2000:12(9):2043-2050. 被引量:1
  • 4Manian Vidya,Ramon Vasquez.Scaled and Rotated Texture Classification Using a Class of Basis Functions[J].Pattern Recognition,1998;31 (12):1937-1948. 被引量:1
  • 5Victor D,Madhavi K.Effect of Wavelet Bases in Texture Classification Using a Tree-Structured Wavelet Transform[C].In:Proceedings of the 33rd Annual Asilomar Conference on Signals,Systems,and Computers,Pacific Grove,CA,1999-10. 被引量:1
  • 6Pedro Garcia-Sevilla.Analysis of Irregularly Shaped Texture Regions[J].Computer Vision and Image Understanding,2001; 84 (1):62-76. 被引量:1
  • 7Kuen-Long Lee,Ling-Hwen Chen.Unsupervised Texture Segmentation by Determining the Interior of Texture Regions Based on Wavelet Transform[J].International Journal of Pattern Recognition and Artificial Intelligence,2001; 15 (8):1231-1250. 被引量:1
  • 8Timo Ojala,Matti Pietikainen.Multiresolution Gray-Scale and Rotation Invariant Texture Classification with local Binary Patterns[J].IEEE Trans PAMI,2002; 24 (7):971-987. 被引量:1
  • 9Coifman R R,Wickerhauser.Entroy-based Algorithms for Best Basis Belection[J].IEEE Trans Information Theory,1992 ;38:713-718. 被引量:1
  • 10Seisuke Fukuda,Haruto Hirosawa.Land Cover Classification from Multifrequency Polarimetric Synthetic Aperture Radar Data Using waveletBased Textural Information[C].In:IEEE Int Geoscience and Remote Sensing Symposium Proceedings,1998:357-359. 被引量:1

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部