期刊文献+

基于毫米波雷达和机器视觉信息融合的障碍物检测 被引量:11

Tramway obstacles detection based on information fusion of MMV radar and machine vision
下载PDF
导出
摘要 提出一种基于毫米波雷达和机器视觉传感器信息融合的障碍物检测方法。首先对毫米波雷达和摄像头进行联合标定,实现雷达与图像数据的时空同步,将雷达探测到的目标位置准确投影到图像中,进而提出一种生成雷达目标感兴趣区域的方法,同时对图像信息运用帧差法,检测图像中运动的物体,得到检测区域。最后将雷达检测区域与机器视觉检测区域进行对比,计算重合度,并根据重合度初步区分目标为行人或车辆。实验结果表明,该方法能够很好地实现毫米波雷达与机器视觉联合检测障碍物,弥补了单一传感器在障碍物检测中的不足。 A method of obstacle detection based on information fusion of millimeter wave radar and machine vision sensor was proposed. Firstly, the millimeter wave radar and camera calibration, image and radar realize spatiotemporal data synchronization, the target position was accurate projection detected by radar images, and then a method of generating radar target region of interest, and the image information using the frame difference method, image detection of moving objects, detection area was put forward. Finally, the radar detection area was compared with the machine vision detection area. The coincidence degree was calculated, and the target was divided into pedestrian or vehicle according to coincidence degree. The experimental results show that the method can detect the obstacle of millimeter wave radar and machine vision well, and make up for the shortage of single sensor in obstacle detection.
出处 《物联网学报》 2017年第2期76-83,共8页 Chinese Journal on Internet of Things
基金 江苏省科技厅基金资助项目(No.BY2015039-12 No.KYLX_1231)~~
关键词 智能驾驶 毫米波雷达 机器视觉 信息融合 intelligent driving millimeter wave radar machine vision information fusion
  • 相关文献

参考文献5

二级参考文献14

  • 1谭晓军,沈伟,郭志豪.一种基于视频的道路交通流量监测方法[J].计算机应用,2005,25(5):1215-1218. 被引量:20
  • 2赵英男,杨静宇.基于Gabor滤波器和SVM分类器的红外车辆检测[J].计算机工程,2005,31(10):191-192. 被引量:7
  • 3孙增圻.计算机控制理论与应用[M].北京:清华大学出版社,1989.115-116. 被引量:4
  • 4Fayad F, Cherfaoui V. Tracking objects using a laser scanner in driving situation based on modeling target shape[C]//2007 IEEE Intelligent Vehicles Symposium. Istanbul, Turkey: IEEE, 2007: 44-49. 被引量:1
  • 5Strelle D, Dietmayer K. Object tracking and classification using a multiple hypothesis approach[C]// 2004 IEEE Intelligent Vehicles Symposium. Parma, Italy: IEEE, 2004: 808-812. 被引量:1
  • 6Mendes A, Nunes U. Situation-based multi-target detection and tracking with laserscanner in outdoor semistructured environment[C]//2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Sendai, Japan: IEEE, 2004: 88-93. 被引量:1
  • 7Wender S, Schoenherr M, Kaempchen N, etal. Classification of laserscanner measurements at intersection scenarios with automatic parameter optimization[C]// 2005 IEEE Intelligent Vehicles Symposium Proceedings. Las Vegas, American: IEEE, 2005: 94-99. 被引量:1
  • 8Fuerstenberg K C, Linzmeier D T, Dietmayer K C J. Pedestrian recognition and tracking of vehicles using a vehicle based multilayer laserscanner[C]//Proceedings of Ⅳ 2002, Intelligent Vehicles Symposium. Versailles, France: IEEE, 2004: 31-35. 被引量:1
  • 9Kruger W,Enkelmann W,Rossle S.Real-time Estimation and Tracking of Optical Flow Vectors for Obstacle Detection[C].Proc.IEEE Ⅳ.Detroit,MI:1995:304 -309. 被引量:1
  • 10Franke U,Gavrila D,G(o)rzig S,et al.Autonomous Driving Goes Downtown[J].IEEE Intelligent Systems & Their Applications,1998,13 (6):40-48. 被引量:1

共引文献78

同被引文献87

引证文献11

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部