摘要
Quasicrystals have long-range quasi-periodic translational ordering and non-crystallographic rotational symmetry.Al-Cu-Fe quasicrystals have great potential for lithium storage because of their high Al content and a large number of defects in the structure.In our previous study(J.Alloys Compd.805(2019)942)we showed that Al-Cu-Fe quasicrystals have good initial capacity whereas its cycle stability is poor.In the present study,graphite/AlCuFe is prepared by the mechanical alloying method.The results show that graphite/AlCuFe quasicrystal composites are successfully synthesized by planetary ball milling at 550 rpm for 80 h.The quasicrystal particle size decreases and the amorphous graphite forms onion-like carbon(OLC)when the two phases mix evenly.OLC forms on the surface of the Al-Cu-Fe quasicrystalline powder.Charge and discharge tests show that graphite/AlCuFe quasicrystal composites have high-stability capacity of 480 mAh/g after 20 cycles,which is larger than the sum of capacities of graphite and Al-Cu-Fe quasicrystals.
Quasicrystals have long-range quasi-periodic translational ordering and non-crystallographic rotational symmetry.Al-Cu-Fe quasicrystals have great potential for lithium storage because of their high Al content and a large number of defects in the structure.In our previous study(J.Alloys Compd.805(2019)942)we showed that Al-Cu-Fe quasicrystals have good initial capacity whereas its cycle stability is poor.In the present study,graphite/AlCuFe is prepared by the mechanical alloying method.The results show that graphite/AlCuFe quasicrystal composites are successfully synthesized by planetary ball milling at 550 rpm for 80 h.The quasicrystal particle size decreases and the amorphous graphite forms onion-like carbon(OLC)when the two phases mix evenly.OLC forms on the surface of the Al-Cu-Fe quasicrystalline powder.Charge and discharge tests show that graphite/AlCuFe quasicrystal composites have high-stability capacity of 480 mAh/g after 20 cycles,which is larger than the sum of capacities of graphite and Al-Cu-Fe quasicrystals.
作者
Haijuan Wang
Xiao Lan
Yao Huang
Xunyong Jiang
王海娟;兰枭;黄耀;姜训勇(Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education),Tianjin Key Laboratory for Photoelectric Materials and Devices,National Demonstration Center for Experimental Function Materials,and School of Materials Science and Engineering,Tianjin University of Technology)