期刊文献+

氮掺杂MnCo_2O_4/N-KB的制备及氧还原催化性能 被引量:4

Preparation and Catalytic Performance for Oxygen Reduction of Nitrogen Doped MnCo_2O_4/N-KB
下载PDF
导出
摘要 以Mn(Ac)_2和Co(Ac)_2作为前驱体,导电碳Ketjenblack (KB)作为负载碳源,采用水解-水热法制备氮掺杂的MnCo_2O_4/N-KB催化剂材料,对其结构特征和碱性溶液中氧还原反应的催化性能进行表征,并进一步分析其氧还原反应活性。结果表明:MnCo_2O_4/N-KB催化剂的形态是KB骨架上生长纳米级MnCo_2O_4,并且在N-KB和MnCo_2O_4之间形成化学耦合,产生协同作用,有效提高了MnCo_2O_4/N-KB催化剂的氧还原活性。MnCo_2O_4与N-KB的质量比为1∶9时,MnCo_2O_4/N-KB催化剂在O_2饱和0.1mol·L^(-1)KOH溶液中对氧还原反应的电催化性能最佳,反应的极限电流密度为5.7 mA·cm^(-2),半波电位接近0.81 V,电子转移数为4。在相同负载量下,MnCo_2O_4/N-KB催化剂相比商用Pt/C(电流密度5.2 mA·cm^(-2),半波电位0.83 V)有着更高的极限电流密度和耐久性。 MnCo2O4/N-KB catalysts was prepared by hydrolysis-hydrothermal method,in which Mn(Ac)2 and Co(Ac)2 were used as precursors and nitrogen doped conductive carbon Ketjenblack(KB)was used as the carbon source.The microstructure of the MnCo2O4/N-KB catalysts and its catalytic performance for oxide reduction reaction were studied.The results showed that chemical coupling was formed between N-KB and MnCo2O4.It produced synergistic effect and effectively improved the oxygen reduction activity of MnCo2O4/N-KB catalyst.When the mass ratio of MnCo2O4 to N-KB was 1∶9,the limiting current density of the reaction was 5.7 mA·cm-2 and the half wave potential was close to 0.81 V.MnCo2O4/N-KB catalyst obtained the best electrocatalytic performance for oxygen reduction.Comparing to the commercial Pt/C catatlyst with a current density of 5.2 mA·cm-2 and a half-wave potential 0.83 V,MnCo2O4/N-KB catalyst had a highly active oxygen reduction with higher ultimate current density and durability under the same capacity condition.
作者 冯艳 吴剑波 张晓玲 彭超群 王日初 FENG Yan;WU Jian-Bo;ZHANG Xiao-Ling;PENG Chao-Qun;WANG Ri-Chu(School of Materials Science and Engineering,Central South University,Changsha 410083,China)
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2019年第4期569-579,共11页 Chinese Journal of Inorganic Chemistry
基金 湖南省自然科学基金(No.2016JJ2147)资助项目
关键词 氧还原反应 锰钴尖晶石 水热反应 电化学 oxygen reduction reaction manganese cobalt spinel hydrothermal synthesis electrochemistry
  • 相关文献

参考文献1

二级参考文献35

  • 1Simon P,Gogotsi Y.Nat.Mater.,2008,7:845-854. 被引量:1
  • 2Lota G,Centeno T A,Frackowiak E,et al.Electrochim.Acta,2008,53:2210-2216. 被引量:1
  • 3Wang H,Yoshio M.Electrochem.Commun.,2006,8:1481-1486. 被引量:1
  • 4Kim S U,Lee K H.Chem.Phys.Lett.,2004,400:253-257. 被引量:1
  • 5Stoller M D,Park S,Zhu Y,et al.Nano Lett.,2008,8:3498-3502. 被引量:1
  • 6CHUYing(褚颖) LIUJuan(刘娟) FANGQing(方庆) etal.Dianchi,2009,39:220-221. 被引量:1
  • 7Liu X M,Zhang X G.Electrochim.Acta,2004,49:229-232. 被引量:1
  • 8Zhang F B,Zhou Y K,Li H L.Mater.Chem.Phys.,2004,83:260-264. 被引量:1
  • 9Conway B E,Pell W G.J.Solid State Electrochem.,2003,7:637-644. 被引量:1
  • 10Wei X,Li F,Yan Z F,Lu G Q.J.Power Sources,2004,134:324-330. 被引量:1

共引文献11

同被引文献8

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部