期刊文献+

一种改进的贪心遗传混合算法在车间调度中的应用与研究

Research of An improved greedy genetic hybrid algorithm in job-shop scheduling
下载PDF
导出
摘要 确定每台机器上各工件的投入顺序与投入时间是车间作业调度所要解决的问题,这种顺序必须和技术约束相容,使某一性能指标达到最优是其最终目的 .寻找高效的调度方法,可以极大的提高资源的利用率和生产效益。遗传算法具有自组织性,并行性和自适应性,对于组合优化问题的求解有着自己的独特的优势,很快便被引入到了车间调度问题的研究领域车间调度问题是典型的NP难题,为了克服传统遗传算法解决车间作业调度问题的局限性,综合遗传算法和局部搜索的优点,提出一种改进的遗传算法,即贪心算法与遗传算法相结合,并通过实验数据证明了该方法的有效性。 The work piece invested order to invest time on each machine job shop scheduling problem to be solved,this order must be compatible and technical constraints,the optimal is the ultimate purpose of a performance indicator.Looking for efficient scheduling method,can greatly improve the utilization of resources and production efficiency.The genetic algorithm has self-organization,parallel and adaptability has its own unique advantages for solving combinatorial optimization problems,will soon be introduced to the research areas of shop scheduling problem shop scheduling problem is NP-hard,in order to overcome the limitations of traditional genetic algorithm to solve the job shop scheduling problem,a comprehensive genetic algorithms and the advantages of local search,proposed an improved genetic algorithm,greedy algorithm and genetic algorithm that combined,and by the experimental data to prove the effectiveness of this method.
作者 李辰
出处 《电子测试》 2013年第3X期141-143,共3页 Electronic Test
关键词 遗传算法 贪心算法 车间调度 greedy algorithm,genetic algorithm,anneal algorithm,job shop scheduling
  • 相关文献

参考文献8

二级参考文献15

  • 1张超勇,饶运清,刘向军,李培根.基于POX交叉的遗传算法求解Job-Shop调度问题[J].中国机械工程,2004,15(23):2149-2153. 被引量:108
  • 2谷峰,陈华平,卢冰原,古春生.粒子群算法在柔性工作车间调度中的应用[J].系统工程,2005,23(9):20-23. 被引量:15
  • 3王万良,唐宇.微粒群算法的研究现状与展望[J].浙江工业大学学报,2007,35(2):136-141. 被引量:33
  • 4朱洪 陈增武 等.算法设计与分析[M].上海:上海科学技术文献出版社,1989.119-120. 被引量:5
  • 5[1]屈婉玲.组合数学[M].北京:北京大学出版社,2001. 被引量:2
  • 6J Kenney, R Eberhart. A new optimizer using particle swarm theory[ C ]. Proceedings of the 6th International Symposium on Micro Machine and Human Science, 1995.39 -43. 被引量:1
  • 7J R Kenney. Eberhart, Particle swarm optimization[ C]. Proceedings of the IEEE International Conference on Neural Networks, 1995. 1942 - 1948. 被引量:1
  • 8Mingyue Feng, etal. A Grouping Particle Swarm Optimization Algorithm for Flexible Job Shop Scheduling Problem [ C ]. Proceedings of IEEE Pacific - Asia Workshop on Computational Intelligence and Industrial Applieation, 2008. 332 -336. 被引量:1
  • 9Li Junqing, etal. An effective hybrid particle swarm optimization algorithm for flexible job - shop scheduling problem[ J]. MASAUM Journal of Computing. 2009,1 ( 1 ) :69 -74, 1942 - 1948. 被引量:1
  • 10H. Z. Jia,A. Y. C. Nee,J. Y. H. Fuh,Y. F. Zhang. A modified genetic algorithm for distributed scheduling problems[J] 2003,Journal of Intelligent Manufacturing(3-4):351~362 被引量:1

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部