期刊文献+

广义Burgers方程的非经典相似约化

Nonclassical Symmetry Reductions of the Generalized Burgers Equation
下载PDF
导出
摘要 讨论了具任意系数的广义Burgers方程的相似约化,这种约化是基于Bluman和Cole所提出的非经典对称群方法。给出了这些约化所对应的常微分方程相应的一些新的精确特解,从而进一步拓展了利用非经典对称群研究变系数非线性偏微分方程的研究领域。 The nonclassical symmetry method due to Bluman and Cole is developed to study similarity reductions of the generalized Burgers equation. Some new special exact solutions corresponding to the ordinary differential equations are then given by the methods. The results given here extend the nonclassical symmetry method further of finding the similarity reductions of nonlinear PDEs with arbitrary functions.
出处 《工程数学学报》 CSCD 北大核心 2003年第6期137-139,共3页 Chinese Journal of Engineering Mathematics
基金 陕西省教委专项研究基金项目(01JK201).
关键词 对称群 广义BURGERS方程 精确解 symmetry group generalized Burgers equation exact solution
  • 相关文献

参考文献11

  • 1[1]Lie S. uber die integration durch bestimmte integrals yon einer klasse linear parieller differentialeichungen[J].Arch Math, 1881 ;6: 328-368 被引量:1
  • 2[2]Ovsianikov L V. Group analysis of differential equations[M]. New York: Academic, 1982 被引量:1
  • 3[3]Bluman G W, Cole J D. The general similarity solution of the heat equation[J]. J Math Mech, 1969;18:1025 -1042 被引量:1
  • 4[4]Olver P, Rosenau P. Some symmetries of the nonlinear heat and wave equations[ J]. Phys Letter A, 1986;118:172- 176 被引量:1
  • 5[5]Fokas A S, Liu Q M. Nonlinear iteration of traveling waves of nonintegrable equations[J]. Phys Rev Letter, 1994;72: 3293-3296 被引量:1
  • 6[6]Ames W F. Nonlinear partial differential equations in engineering Ⅱ[ M]. New York: Academic, 1986 被引量:1
  • 7[7]Pucci E. Similarity reductions of partial differential equations[ J ]. J Phys A: Math Gen, 1992; 25: 2631-2640 被引量:1
  • 8[8]Bluman G W, Kumei S. Symmetries and differential equations[M]. New York: Springer-Verlag,1989 被引量:1
  • 9[9]Olver P J. Applications of lie groups to differential equations[ M ]. Berlin: Springer-Verlag, 1986 被引量:1
  • 10[10]Clarkson P A, Hood S. Nonclassical symmetry reduction and exact solutions of the zabolotskaya-Khokhlov equations [ J]. Europ J Appl Math, 1992; 3: 381-415 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部