期刊文献+

古德曼悖论与形式的归纳逻辑系统 被引量:2

Goodman Paradox and the Inductive Logical System
下载PDF
导出
摘要 之所以会产生古德曼悖论 ,不仅是因为类律假说和偶适假说的混同 ,而且也是因为对归纳的这样一个似是而非的刻画 :假设归纳推理的前提都为真 ,则其结论不一定但很可能为真 (即所谓的“归纳概然性特征”)。这证明基于归纳的概然性特征 ,不可能建立起形式的归纳逻辑。相反 ,一旦以下述归纳的必然性特征来刻画归纳 :假设归纳推理的前提都为假时 ,则其结论一定为假 。 The cause of the Goodman paradox is not only the indiscrimination of the law-like hypothesis and accidental hypothesis but also such a characterization: It is unnecessary but improbable that the conclusion is false while the premises are all true('inductive probability'). It has been proved that it is impossible to establish the formal inductive logic on the basis of 'inductive probability'. On the contrary, we are able to construct the formal inductive logical system once we characterize the induction as: It is impossible that the conclusion is true while the premises are all false('inductive necessity').
作者 熊明
出处 《华南师范大学学报(社会科学版)》 CSSCI 2003年第5期28-34,54,共8页 Journal of South China Normal University:Social Science Edition
关键词 归纳逻辑 古德曼悖论 归纳逻辑系统 归纳推理 类律假说 偶适假说 inductive logic Goodman Paradox inductive logical system
  • 相关文献

参考文献2

  • 1[1]Haack. S: Philosophy of Logics, Cambridge UniversityPress, 1978, P17. 被引量:1
  • 2[15]这一特征又被称为归纳的"保假性",最早为R.S. Michalski 指出 . 见 R. S. Michalski: Understand ing the Nature of Learning: Issues and Research Direc tions, in R. S. Michalski, J. G. Carbonell, T. M.Mitchell: Machine Learning: an Artificial Intelligence Approach, Vol. Ⅱ , California: Morgan Kaufmann Pub lishers, 1986, p. 8. 被引量:1

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部