摘要
结合匈牙利方法 ,利用积和式 (Permanent)概念、性质和矩阵初等变换等技巧 ,解决了当指派问题的效益矩阵同一行 (或同一列 )中有多于一个零时 ,如何选取最优解问题 ,给出了最优解个数的计算公式及求出全体最优解的方法 .
The theories and algorithm about the set of optimum solution of the assignment problem by using Hungarian algorithm and definition of permanent are given. It is pointed out that there are optimum solutions corresponding to the matrix of the assignment problem when the value of its permanent is not equal to zero and the number of optimum solutions is equal to the value of its permanent. An algorithm is presented to give all optimum solutions.
出处
《华中理工大学学报》
CSCD
北大核心
2000年第12期101-103,共3页
Journal of Huazhong University of Science and Technology
关键词
指派问题
最优解
积和式
置换阵
assignment problem
optimum solution
permanent matrix
permutation matrix