期刊文献+

人工神经网络应用于糖尿病/糖耐量异常的疾病分类研究 被引量:2

Study on the application of artificial neural network on dia betes mellitus/insulin-glucose tolerance classification
原文传递
导出
摘要 目的 探讨人工神经网络 (ANN )用于疾病分类研究的前景。方法 利用某矿区 1996年糖尿病现况调查资料 ,采用学习向量量化 (LVQ )网络和判别分析方法进行糖尿病 /糖耐量 (DM IGT)异常 正常状态的判别比较 ;同时人为设置变量缺损值 ,检验LVQ网络对缺失数据的适应性。结果 LVQ网络结构为 2 5→ 13→ 3 ;网络判断准确率为 96.98% ,对血糖异常者的正确判断率为92 .45%。利用逐步判别分析建立的含 11个变量的判别方程的判断准确率为 87.3 4 % ,对血糖异常者的正确判断率为 85.53 %。LVQ网络对带缺失项样本的误判比例为 1 3 0 ,判别分析则为 7 3 0。结论 利用LVQ网络进行疾病分类预测 ,不仅能获得更好的预测效果 ,而且对资料的类型、分布不作任何限制 ,也不需要对分析变量做任何处理 ,还能很好地处理带缺失项的资料 。 ObjectiveTo discuss the potential applic at ion of artificial neural network (ANN) on the epidemiological classification of disease. MethodsLearning vector quantization neural network (LVQN N) and discriminate analysis were applied to data from epidemiological survey in a mine in 1996. ResultsThe structure of LVQNN was 25→13→3. The total veracity rates was 96.98 %, and 92.45 % among the abnormal blood glucose individuals. Through stepwise discriminate analysis, the discriminate equations were established including 11 variables with a total veracity rate of 87.34 %, but was 85.53 % in the abnormal blood glucose individuals. Further anal ysis on 30 cases with missing values showed that the disagreement ratio of LVQ w as 1/30, lower than that of discriminate analysis of 7/30. ConclusionsCompared to the conventional statistics m ethod, LVQ not only showed better prediction precision, but could treat data wi th missing values satisfactorily plus it had no limit to the type or distributi on of relevant data, thus provided a new powerful method to epidemiologic predi ction.
出处 《中华流行病学杂志》 CAS CSCD 北大核心 2003年第11期1052-1056,共5页 Chinese Journal of Epidemiology
关键词 人工神经网络 糖尿病 糖耐量异常 疾病分类 调查 Artificial neural network Learning vector quantization neural network Diabetes mellitus/insulin glucose tolerance Classi fication of disease
  • 相关文献

参考文献16

  • 1谭宇明,苏开才,毛宗源.基于神经网络的带补偿作用的机器人逆动力学控制[J].控制理论与应用,1997,14(1):7-11. 被引量:4
  • 2王小如 朱尔一.分析化学进展[M].南京:南京大学出版社,1994.925. 被引量:1
  • 3蔡煜东,朱建中,甘骏人,姚林声.人工神经网络在冠心病患者血液分析中的应用[J].分析化学,1992,20(8):885-887. 被引量:12
  • 4施洋 李俊.MATLAB语言工具箱—TOOLBOX实用指南[M].西安:西北工业大学出版社,1999.. 被引量:1
  • 5陈心广 尹平.医学科研设计与数据分析[M].武汉:武汉大学出版社,1997.. 被引量:2
  • 6Chen S, Billings SA. Neural networks for non linear dynamic system modeling and identification. Int J Control, 1992,56 : 291-319. 被引量:1
  • 7Mobley BA, Schechter E, Moore WE, et al. Predictions of coronary artery stenosis by artificial neural network. Artif Intell Med,2000,18 : 187-203. 被引量:1
  • 8Sonke GS, Heskes T, Verbeek AL, et al. Prediction of bladder outlet obstruction in men with lower urinary tract symptoms using artificial neural networks. J Urol,2000,163 : 300-305. 被引量:1
  • 9Duh MS, Walker AM, Ayanian JZ. Epidemiologic interpretation of artificial neural network. Am J Epidemiol, 1998,147 : 1112-1122. 被引量:1
  • 10Duh MS, Walker AM, Pagano M, et al. Prediction and crossvalidation of neural networks versus logistic regression: using hepatic disorders as an example. Am J Epidemiol, 1998, 147 : 574-579. 被引量:1

二级参考文献7

共引文献23

同被引文献9

  • 1涂文明.城市化进程中失地农民社会保障模式的选择和建构[J].理论导刊,2004(12):32-34. 被引量:56
  • 2戴诗亮,沈成武,沈延春,汪芳子.人工神经网络用于人体振动响应的分析[J].清华大学学报(自然科学版),1996,36(8):87-92. 被引量:13
  • 3赵翠玲,李明蔚.失地农民社会心理与社会稳定刍议[J].山东省农业管理干部学院学报,2007,23(1):18-19. 被引量:5
  • 4Butler R, Welch V, Engert D, et al. A national-scale Authentication Infrastructure. IEEE Computer, 2000,33 ( 12 ) : 60- 66. 被引量:1
  • 5Mehmed Kantardzic. Data Miuing Conepts, Models, Methods, and Algorithms(数据挖掘概念、模型、方法和算法).闪四清,陈茵,程雁,等译.北京:清华大学出版社,2003:171-195. 被引量:1
  • 6Matsuki Y, Nakamura K, Watanabe H, et al. Usefulness of an artificial neural network for differentiating benign from malignant pulmonary nodules high-resolution CT: evaluation with receiver operating characteristic analysis [J] . A JR, 2002, 178 (3) : 657-663. 被引量:1
  • 7Adam E, Alfred A, Michael E, et al. Pharmacodynamic population analysis in chronic renal failure using artifieal neural networks-a comparative study [J] . Neural Networks, 2003, 16: 841-845. 被引量:1
  • 8Chung J, Bernstein J, Glassock RJ. Renal disease classification and atlas of glomerular disease [M] . 2^nded. New York: Lippincott, 1994: 4-5. 被引量:1
  • 9Wyatt R J, Emancipator SN, Kon V, et al. IgA nephropathy databand: Development of a system for management of renal biopsy acquired data [J] . Am Jkid Dis, 1997, 6: 817. 被引量:1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部