期刊文献+

延迟微分反馈法控制混沌 被引量:4

Chaos control using delayed differential feedback
下载PDF
导出
摘要 利用可测变量的微商进行反馈,提出了用延迟微分反馈控制(DDFC:DelayedDifferentialFeedbackControl)实现混沌控制的方法。理论证明了微分反馈控制和DDFC控制Lü系统3个平衡点的稳定可控性。在Matlab进行了数值仿真,结果表明,通过调节延迟时间τ和控制增益k,DDFC系统能自动寻找和稳定不同的不稳定周期轨道(UPO:UnstablePeriodicOrbit),实现混沌控制。 The controllability of the equilibriums of the controlled system with the differential feedback control is proved theoretically.DDFC(Delayed Differential Feedback Control) is presented.It takes the measurable differential variate as the feedback. The controllability of the equilibriums of the controlled system with the differential feedback and DDFC control is proved theoretically. The UPOs(Unstable Periodic Orbits) are found and stabilized by adjusting the gain k and delayed time τ in numerical simulations in Matlab.The control of chaos is realized.
作者 黄报星
出处 《吉林大学学报(信息科学版)》 CAS 2003年第4期362-365,共4页 Journal of Jilin University(Information Science Edition)
基金 武汉市科技计划资助项目(20015007090-11)
关键词 混沌系统 微分反馈 延迟 平衡点 Chaotic system Differential feedback Delayed Equilbrum point
  • 相关文献

参考文献9

  • 1胡岗等编著..混沌控制[M].上海:上海科技教育出版社,2000:203.
  • 2Lü JinHu Chen G Zhang S.Bridge the Gap Between the Lorenz System and the Chen System[J].Int J of Bifurcation and Chaos,2002,12(12):2-2. 被引量:2
  • 3Ott E, Grebogi C, York J. Controlling chaos [J]. Phys Lett, 1990, 64:1 196-1 199. 被引量:1
  • 4Ditto W D, Rauseo S N, Spano M L. Experimental control of chaos [J]. Phys Rev Lett, 1990, 65: 3 211-3 214. 被引量:1
  • 5Chen G R, Dong Xo From Chaos to Order: Methodologies, Perspectives and Applications [M]. Singapore: World Scientific, 1998. 被引量:1
  • 6陆君安,吕金虎,等.Parameter Identification and Tracking of a Unified System[J].Chinese Physics Letters,2002,19(5):632-635. 被引量:17
  • 7Lü JinHu, Chen G and Zhang S. Bridge the Gap Between the Lorenz System and the Chen System [J]. Int J of Bifurcation and Chaos, 2002, 12 (12): 2 917-2 926. 被引量:1
  • 8Agiza H N. Controlling chaos for the dynamical system of coupled dynamos[J]. Chaos Solitons and Fractals, 2000, 13:341-352. 被引量:1
  • 9Pyragas K. Continuours control of chaos by delayed self-controlling feedback [J]. Phys Lett A, 1992, 170: 421-428. 被引量:1

二级参考文献10

  • 1Chen G and Dong X 1998 From Chaos to Order: Methodologiess Perspectives and Applications (Singapore: World Scientific) 被引量:1
  • 2Lu J H, Lu J A and Chen S H 2002 Chaotic Time Series Analysis and Its Application (Wuhan: Wuhan University Press) (in Chinese) 被引量:1
  • 3Chen G and Ueta T 1999 Int. J. Bifurcation Chaos 9 1465 被引量:1
  • 4Lorenz E N 1963 J.Atmos.Sci 20 130 被引量:1
  • 5Vanecek A and Celikovsky S 1996 Control Systems: From Linear Analysis to Synthesis of Chaos (London: Prentice-Hall) 被引量:1
  • 6Lu J H and Chen G R 2002 Int J. Bifurcation Chaos 12 659 被引量:1
  • 7Lu J H, Chen G R, Zhang S C and Celikovsky S 2002 Int.J. Bifurcation Chaos 12(12) at press 被引量:1
  • 8Lu J H and Zhang S C 2001 Phys. Lett. A 286 148 被引量:1
  • 9Zheng Z G, Hu G and Hu B B 2001 Chin. Phys. Lett. 18 874 被引量:1
  • 10Wu S G, Sang H B and He K F 2001 Chin. Phys. Lett.18 341 被引量:1

共引文献17

同被引文献15

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部