期刊文献+

基于六模糊控制器的自适应遗传算法 被引量:2

6FLCs-based adaptive genetic algorithm
下载PDF
导出
摘要 为了提高遗传算法对满意解的搜索和优化能力,采用基于模糊逻辑的自适应控制策略,提出了一种符号编码的自适应遗传算法。该算法可自动均衡搜索和优化关系,采用6个模糊控制器实现对选择、交叉、变异操作的动态参数组合控制。试验和理论分析表明,六模糊控制器的组合控制方式可以综合两模糊控制器或三模糊控制器独立控制的性能。对旅行商(TSP:TravelingSalesmanProblem)问题的求解结果表明:该算法在解决类似于TSP的组合优化问题时,具有比标准遗传算法更好的性能。 Adaptive control strategies based on fuzzy logic are used to enhance the GA(Genetic Algorithm)'s capability of exploration and optimization for satisfying solution. Fuzzy logic controllers have been built for inducing suitable exploration and optimization relationship throughout the run of GA automatically. The proposed symboliccoded AGA(Adaptive Genetic Algorithm) uses 6 fuzzy logic controllers (6FLCs) to control genetic operating parameters of selection, crossover and mutation dynamically. Experiments and theoretic analyses show that the combination control method of 6FLCs could combine the good behaviors of the 2FLCsbased AGA and the 3FLCsbased AGA as a whole. Experimental results of the TSP(Traveling Salesman Problem) demonstrate that the 6FLCsbased AGA is more efficient than a standard GA in solving combinatorial optimization problems which is similar to the TSP.
出处 《吉林大学学报(信息科学版)》 CAS 2003年第4期329-333,共5页 Journal of Jilin University(Information Science Edition)
基金 国防基础科研基金资助项目
关键词 自适应遗传算法 模糊控制器 动态参数控制 旅行商问题 Adaptive genetic algorithm Fuzzy logic controller Dynamic parameters control Traveling salesman problem
  • 相关文献

参考文献10

  • 1Herrera F, Lozano M. Adaptation of Genetic Algorithm Parameters Based on Fuzzy Logic Controllers[A]. Genetic Algorithms and Soft Computing[A], [s. l. ]:Physica-Verlag, 1996. 95-125. 被引量:1
  • 2Grefenstette J J. Optimization of control parameters for genetic algorithms[J]. IEEE Transaction on Systems Man and Cybernetics, 1986, 16: 122-128. 被引量:1
  • 3Baeck T. The Interaction of Mutation Rate, Selection, and Self-Adaptation Within a Genetic AlgorithmB[A]. Parallel Problem Solving from Nature 2[C], Amsterdam: Elsevier Science Publishers, 1992. 85-94. 被引量:1
  • 4Deb K, Agrawal S. Understanding Interactions Among Genetic Algorithm Parameters[A]. Foundations of Genetic Algorithm 5[C], [s. l.]: Morgan Kaufman Publisher, 1998. 被引量:1
  • 5LEE M A, TAKAGI H. Dynamic Control of Genetic Algorithms using Fuzzy Logic Techniques[A]. Proceeding of 5th International Conference on Genetic Algorithms(ICGA' 93)[C]. [s. l.]: Urbana-Champaign, IL, 1993. 76-83. 被引量:1
  • 6Xu H Y, Vukovich G. A Fuzzy Genetic Algorithm with Effective Search and Optimization[A]. Proceeding of 1993 International Joint Conference on Neural Networks[C]. [s. l. ]: [s. n. ], 1993. 2 967-2 970. 被引量:1
  • 7Herrera F, Lozano M, Verdegay J L. Dynamic arid Heuristic Fuzzy Connectives Based Crossover Operators for Controlling the Diversity and Convergence of Real-coded Genetic Algorithms [J]. International Journal of Intelligent Systems, 1996, 11: 1 013-1 041. 被引量:1
  • 8刘莉,陈学允.基于模糊遗传算法的配电网络重构[J].中国电机工程学报,2000,20(2):66-69. 被引量:190
  • 9Herrera F, Lozano M. Adaptive Genetic algorithms Based on Coevolution with Fuzzy Behaviors[R]. Spain: Technical Report # DECSAI-98-01-05, Department of Computer Science and Artificial Intelligence, University of Granada, 1998. 被引量:1
  • 10Baker J E. Reducing bias and inefficiency in the selection algorithm[A]. Proceeding of ICGA2[C]. [s. l. ]:[s. n. ], 1987. 14-21. 被引量:1

二级参考文献3

共引文献189

同被引文献20

  • 1王宝军,李春华,肖洋.电牵引采煤机模糊控制系统调速特性的仿真[J].煤炭学报,2007,32(7):778-780. 被引量:20
  • 2Srinivas M, L M Patnaik. Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms [J]. IEEE Transactions on Systems, Man and Cybernetics (S 1083-4427), 1994.24(4): 656-667. 被引量:1
  • 3Tahera K, R N Ibrahim, P B Lochert. Development of a Self Adaptive Genetic Algorithm [C]// Seventh International Conference on Intelligent Systems Design and Applications, 2007: 883-888. 被引量:1
  • 4Tongchim S, P Chongstitvatana. Parallel genetic algorithm with parameter adaptation [J]. Information Processing Letters (S0020- 0190), 2002, 82(1): 47-54. 被引量:1
  • 5Srinivasa K G, K R Venugopal, L M Patnaik. A self-adaptive migration model genetic algorithm for data mining applications [J]. Information Sciences (S0020-0255), 2007, 177(20): 4295-4313. 被引量:1
  • 6De Jong K A. Analysis of the behavior of a class of genetic adaptive systems [D]. Michigan, USA: University of Michigan. 1975. 被引量:1
  • 7Rudolph G. Convergence analysis of canonical genetic algorithms [J]. ]EEE Trans on Nerual Network (S1045-9227), 1994, 5(1): 96-101. 被引量:1
  • 8Matsumura T, M Nakamura, D Miyazato, K Onaga. Effects of Chromosome migration on a Parallel and Distributed Genetic Algorithm [C]// Third International Symposium on Parallel Architectures, Algorithms, and Networks, 1997: 357-361. 被引量:1
  • 9Wang L, A A Maciejewski, H J Siegel, V P Roychowdhury. A comparative study of five parallel genetic algorithms using the traveling salesman problem [C]// Proceedings of the First Merged International Parallel Processing Symposium and Symposium on Parallel and Distributed Processing, 1998: 345-349. 被引量:1
  • 10李晓豁.掘进机截割的关键技术研究.北京:机械机械工业出版社,2007.10. 被引量:3

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部