期刊文献+

三矩阵乘积的(T,S,2)-逆的反序律 被引量:2

The Reverse Order Law for (T,S,2)-Inverse of a Triple Matrix Product
下载PDF
导出
摘要 矩阵A的(T,S,2)-逆是指适合XAX=X,R(X)=T和N(X)=S的矩阵X,以矩阵的秩为工具,本文研究了三矩阵乘积的(T,S,2)-逆的反序律,给出了(ABC)_(T_4,S_4)^(2)=C_(T_3,S_3)^(2)B_(T_2,S_2)^(2)A_(T_1,S_2)^(2)的充要条件。 The (T, S,2)-inverse .AT(2),s of a matrix A is matrix the X satisfying XAX = X,R(X) = T and N(X) = S . This paper deals with the reverse order law for (T,S,2)-inverse of a triple matrix product and proves the necessary and sufficient condition for (ABC)T4(2),S4 = .
作者 刘桂香
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2003年第4期731-736,共6页 数学研究与评论(英文版)
关键词 矩阵乘积 (T S 2)-逆 反序律 matrix product (T,S,2)-inverse reverse order law.
  • 相关文献

参考文献8

  • 1王国荣,高璟.三矩阵乘积的加权Moore-Penrose逆的反序律[J].上海师范大学学报(自然科学版),2000,29(3):1-11. 被引量:4
  • 2BEN-INRAEL A, GREVILLE TNE. Generalized Inverse: Theory and Applications [M]. Wiley,NewYork, 1974. 被引量:1
  • 3GOLUB G H, LOAN C F Van. Matrix Copmutations [M]. The Johns Hopkins university Pree Baltimore, 1983. 被引量:1
  • 4RAO C R, MITRA S K. Generalized Inverses of Matrices and Its Applications [M]. Wiley, New York, 1971. 被引量:1
  • 5SUN Wen-yu, WEI Yi-min. Inverse order rule for weighted generalized inverse [J]. SIAM J Matrix Anal Appl , 1998, 19: 772--775. 被引量:1
  • 6TIAN Yong-ge. The Moore-Penrose inverse of a triple matrix product [J]. Math Practice Theory, 1992, 1: 64--70. 被引量:1
  • 7TIAN Hong-jiong. On the reverse order law (AB)^D=B^DA^D[J]. J Math Res Exposition, 1999, 19 (2): 355--358. 被引量:1
  • 8CHEN Yong-lin ,CHEN Xin.Representation and approximation of the outer inverse AT.S^(2) of a matrix A [J].Linear Algebra Appl, 2000, 308: 85--107. 被引量:1

二级参考文献10

  • 1王国荣.矩阵与算子广义逆[M].北京:科学出版社,1998.. 被引量:25
  • 2SUN Wen-yu, WEI Yi-min. Inverse order rule for weighted generalized inverse[J]. SIAMJ MATRIX Anal Appl, 1998, 19:772-775. 被引量:1
  • 3TIAN Yong-ge, The Moore-Penrose inverse of a triple matrix product[J]. Math Practice Theory 1992(1): 64-70. 被引量:1
  • 4BEN-ISRAEL A, GREVILLE TNE. Generalized Inverse, Theory and Application[M]. New York:John Wiley, 1974. 被引量:1
  • 5GOLUB G H, LOAN C F Van. Matrix Computations[M]. The Johns Hopkins University Press, Baltimore, MD, 1983. 被引量:1
  • 6HARTWIG R E. Block generalized inverses[J]. Arch Relational Mech Anal, 1976, 61: 197-251. 被引量:1
  • 7RAO C R, MITRA S K, Generalized Inverse of Matrices and Its Applications[M]. New York: John Wiley, 1971. 被引量:1
  • 8HARTWIG R E. The reverse order law revisited[J]. Linear AlgeBra Appl, 1986, 76: 241-246. 被引量:1
  • 9MANSAGLIA G, STGAN G P. Equalities and inequalities for ranks of matrices[J]. LMLA, 1974,8: 269-292. 被引量:1
  • 10STEWART G W.矩阵计算引论[M].上海:上海科技出版社,1980. 被引量:1

共引文献3

同被引文献15

  • 1GOLUB G H, LOAN C F V. An matrix computations[M]. Baltimore MD: The Johns Hopkins University Press, 1983:23-90. 被引量:1
  • 2HARTW IG R E. Block generalized inverses[J].Arch Relational Mech Anal,1976,61:197-251. 被引量:1
  • 3TAO C R,MITRA S K. Generalized inverse of matrices and its applications[M]. New York:John Wiley, 1971:102-147. 被引量:1
  • 4BEN-ISRAEL A, GREVILLE T N E. Generalized inverses: theory and applications[M]. New York: Springer-Verlag, 2003: 55-94. 被引量:1
  • 5CHEN YONG-IIN,CHEN Xin. Representation and approximation of the outer inverse A^(2)T,S of a matrix A[J].Linear Algebra Appl, 2000,308 : 85-107. 被引量:1
  • 6BEN-ISRAEL A,GREVILLE T N E. Generalized Inverses: Theory and Applications [M]. Wiley,New York, 1974. 被引量:1
  • 7CHEN Yong-Lin, CHEN Xin. Representation and approximation of the outer inverse A(2)T,S of a matrix A [J]. Linear Algebra Appl. , 2000, 308: 85-107. 被引量:1
  • 8SUN Wen-yu, Wei Yi-min. Inverse order rule for weighted generalized inverse [J]. SIAM J. Matrix Anal. Appl., 1998, 19: 772-775. 被引量:1
  • 9TIAN Yong-ge. The Moore-Penrose inverse of a triple matrix product [J]. Math. Practice Theory,1992, 1: 64-70. (in Chinese) 被引量:1
  • 10TIAN Hong-jiong. On the Reverse order law (AB)D=BDAD[J]. J. Math. Res. Exposition, 1999, 19(2): 355-358. 被引量:1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部