摘要
针对腿-轮复合机器人进行了运动学与动力学模型构建,构造控制器实现了基本的运动功能。将整体平台解耦为四个子系统,利用拉格朗日方法分别对手臂子系统、腿部子系统、头部子系统以及虚拟倒立摆子系统进行动力学分析;结合整体运动学与齐次坐标变换方法,将机体总质量映射为虚拟倒立摆质心总质量,与驱动轮构成虚拟两轮倒立摆。将手臂与腿部的关节状态空间动力学方程通过速度雅可比矩阵转换为笛卡尔状态空间动力学方程,构造加入前馈补偿的比例增益反馈线性化控制器,控制手臂末端执行器与足端到达期望位置;分别构造三个控制器对虚拟倒立摆的平衡、直行与自转功能进行解耦控制。最后,在Webots中进行了平衡仿真、直行仿真、转弯仿真以及身体姿态调整仿真,结果体现了所提方法的有效性。
The kinematics and dynamics model is constructed for the wheel-legged hybrid robot,and the controllers are built to realize the Omnidirectional motion. Decouple the whole robot into four subsystems,and the Lagrangian method is used to analyze the dynamics of the arm subsystem,the leg subsystem,the head subsystem and the virtual inverted pendulum system respectively. Combined with the overall kinematics and homogeneous coordinates,the total mass of the body is transformed to one point as the virtual centroid of virtual inverted pendulum,and forms a virtual two-wheel inverted pendulum with the driving wheel. The state space dynamics equation of the joint state of the arm and the leg is converted into the Cartesian state space dynamics equation through the velocity Jacobian matrix,and a proportional gain feedback linearization controller with feedforward compensation is constructed to control the end of the arm and the end of the foot to desired position; three controllers are respectively constructed to decoupling the balance,straight line and rotation functions of the virtual inverted pendulum. Finally,balanced simulation,straight-through simulation,turning simulation and body posture adjustment simulation were carried out in Webots. The results show the effectiveness of the proposed method.
出处
《无人系统技术》
2018年第3期8-20,共13页
Unmanned Systems Technology
基金
山东省自然科学基金(ZR2017MEE033)
国家自然科学基金(61773226)
山东省重点研发计划(2018GGX103054)
关键词
腿-轮复合机器人
虚拟倒立摆
模块化控制
解耦控制
笛卡尔空间控制
全方位运动
Wheel-Legged Hybrid Robot
Virtual Inverted Pendulum
Modular Control
Decoupling Control
Cartesian Space Control
Omnidirectional Motion