摘要
文[1]给出了构造James空间的一般方法,从而给出了一大类一阶次自反空间,本文感兴趣的则是这类空间的自反子空间问题。我们给出了一般形式的James空间的某种自反子空间,还详尽地讨论了在正交正则空间上构成的James空间的自反子空间问题,得到了与文[5]同样好的结果。
In this paper, we show that if {e_n} is the natural basis of J(X), k_(1+1)~ -k_i≥2, {k_i}_1~∞ N, J(X) is quasi—reflexive space, then [e_(k_i) is a reflexive subspace of J (X). Moreover, (ⅰ) if {x_i} is a regular basis of X, there exist reflexive subspaces which are not uniformly convexifiable in J(x); (ⅱ) if {x_i} is a orthogonal, IS basis of reflexive space X, then (e_(2n)-e_(2n-1)] is a reflexive subspace which is isomorphic to X in J(X).
出处
《江西师范大学学报(自然科学版)》
CAS
1989年第4期71-77,共7页
Journal of Jiangxi Normal University(Natural Science Edition)
关键词
James空间
自反子空间
基
reflexive subspacos
natural basis
regular basis