摘要
首先对Logistic混沌变量的遍历区间[0,1]进行N等分;然后利用M个独立的混沌变量在这NM个等分区域中搜索最优解,从而将混沌搜索算法推广应用于解决一类0-1整数规划问题。将这一混沌搜索算法应用于靶场效能优化的仿真表明,此方法收敛速度快、精度高、简单、易于实现,而且可以避免传统算法易陷入局部最优的缺点。
This algorithm carries out N equal partition on [0 1] interval of Logistic chaotic variable, then searches for optimal solution among NM pieces of equal partition area by using M independent chaotic variable. Thus, chaotic searching algorithm is generalized to solving a kind of 0-1 integer programming problem. Chaotic searching algorithm is applied to optimize effectiveness in absence of air defenses. Simulation results indicate that the algorithm is simple and easy to implement, and has higher efficiency in the rate of convergence and accuracy. Moreover, the algorithm overcomes main drawback of traditional algorithm that suffers from the local minimum.
出处
《控制与决策》
EI
CSCD
北大核心
2003年第6期712-715,共4页
Control and Decision
关键词
混沌优化
0-1整数规划
靶场效能
Chaos optimization
0-1 integer programming
Effectiveness in absence of air defenses