摘要
研究了拟左交错BCI-代数,它比拟交错BCK-代数更具一般性。文中证明拟左交错BCI-代数具有散子代数性质,且可分解为熟知的拟交错BCK-代数与结合BCI-代数的(LX)并代数。
In this paper, the quasileft-alternating BCI-algebra is discussed. It is more general than the quasileft-alternating BCK-algebra. It is proved that the quasileft-alternating BCI-algebra has the properties of discrete sub-algebra and can be decomposed into (LX)union algebra of the quasialternating BCK-algebra and the associative BCI-algebra.
出处
《山东建材学院学报》
1992年第2期59-63,共5页
Journal of Shandong Institute of Building Materials
关键词
拟交措
BCI-代数
散子代数
quasileft-alternating BCI-algebra
quasialternating BCK-algebra
discrete sub-algebra
(LX) union algebra