摘要
Julia分形图是研究复动力系统的一种有力工具.本文研究了由二阶Carotid-Kundalini函数f(z)=cos(Nz2arccos(z))+c生成的Julia分形图的性质:当c为实数和N为实数或纯虚数时,分形图具有对称性;当N为实数,c=0时,图形具有5主瓣和4个从主瓣上发出的触角,且触角无界.
The Julia set is an effective tool in investigations of complex dynamical systems. In this paper, we will study the characteristics of the Julia set which is produced from complex Carotid\|Kundalini function \%f(z)\% = cos(\%Nz2\%arccos(\%z))+c\%. We point out that the Julia set is symmetric for the real axis and if \%N\% is real number and \%c\%=0, there are five main petals and four antennae, and each antenna is boundless.
出处
《中国计量学院学报》
2003年第3期210-212,共3页
Journal of China Jiliang University